An Architecture-Independent Instruction Shuffler to Protect against Side-Channel Attacks

被引:22
|
作者
Bayrak, Ali Galip [1 ]
Velickovic, Nikola [1 ]
Ienne, Paolo [1 ]
Burleson, Wayne [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[2] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
关键词
Design; Security; Performance; Side-channel attacks; instruction shuffler; random permutation generation; BIT PERMUTATIONS; DESIGN;
D O I
10.1145/2086696.2086699
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Embedded cryptographic systems, such as smart cards, require secure implementations that are robust to a variety of low-level attacks. Side-Channel Attacks (SCA) exploit the information such as power consumption, electromagnetic radiation and acoustic leaking through the device to uncover the secret information. Attackers can mount successful attacks with very modest resources in a short time period. Therefore, many methods have been proposed to increase the security against SCA. Randomizing the execution order of the instructions that are independent, i.e., random shuffling, is one of the most popular among them. Implementing instruction shuffling in software is either implementation specific or has a significant performance or code size overhead. To overcome these problems, we propose in this work a generic custom hardware unit to implement random instruction shuffling as an extension to existing processors. The unit operates between the CPU and the instruction cache (or memory, if no cache exists), without any modification to these components. Both true and pseudo random number generators are used to dynamically and locally provide the shuffling sequence. The unit is mainly designed for in-order processors, since the embedded devices subject to these kind of attacks use simple in-order processors. More advanced processors (e.g., superscalar, VLIW or EPIC processors) are already more resistant to these attacks because of their built-in ILP and wide word size. Our experiments on two different soft in-order processor cores, i.e., OpenRISC and MicroBlaze, implemented on FPGA show that the proposed unit could increase the security drastically with very modest resource overhead. With around 2% area, 1.5% power and no performance overhead, the shuffler increases the effort to mount a successful power analysis attack on AES software implementation over 360 times.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Lightweight Implementation of Saber Resistant Against Side-Channel Attacks
    Abdulgadir, Abubakr
    Mohajerani, Kamyar
    Dang, Viet Ba
    Kaps, Jens-Peter
    Gaj, Kris
    PROGRESS IN CRYPTOLOGY, INDOCRYPT 2021, 2021, 13143 : 224 - 245
  • [22] Efficient Solution to Secure ECC Against Side-channel Attacks
    Wu Keke
    Li Huiyun
    Zhu Dingju
    Yu Fengqi
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (03): : 471 - 475
  • [23] Hardening Embedded Networking Devices Against Side-Channel Attacks
    Liu, Donggang
    Dong, Qi
    AD HOC & SENSOR WIRELESS NETWORKS, 2011, 12 (1-2) : 103 - 124
  • [24] FPGA implementations of SPRING and their countermeasures against side-channel attacks
    Brenner, Hai
    Gaspar, Lubos
    Leurent, Gaëetan
    Rosen, Alon
    Standaert, François-Xavier
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8731 : 414 - 432
  • [25] Temporal Power Redistribution as a Countermeasure Against Side-Channel Attacks
    Zooker, David
    Elkoni, Matan
    Shalom, Or Ohev
    Weizman, Yoav
    Levi, Itamar
    Keren, Osnat
    Fish, Alexander
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [26] Formal Verification of Software Countermeasures against Side-Channel Attacks
    Eldib, Hassan
    Wang, Chao
    Schaumont, Patrick
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2014, 24 (02)
  • [27] TreasureCache: Hiding Cache Evictions Against Side-Channel Attacks
    Li, Mengming
    Bu, Kai
    Miao, Chenlu
    Ren, Kui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4574 - 4588
  • [28] How secure is your cache against side-channel attacks?
    He, Zecheng
    Lee, Ruby B.
    50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, : 341 - 353
  • [29] Closing Leaks: Routing Against Crosstalk Side-Channel Attacks
    Seifoori, Zeinab
    Mirzargar, Seyedeh Sharareh
    Stojilovic, Mirjana
    2020 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA '20), 2020, : 197 - 203
  • [30] FPGA Implementations of SPRING And Their Countermeasures against Side-Channel Attacks
    Brenner, Hai
    Gaspar, Lubos
    Leurent, Gaetan
    Rosen, Alon
    Standaert, Francois-Xavier
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2014, 2014, 8731 : 414 - 432