Quantum criticality in many-body parafermion chains

被引:1
|
作者
Lahtinen, Ville [1 ]
Mansson, Teresia [2 ]
Ardonne, Eddy [3 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Royal Inst Technol KTH, Sch Engn Sci, Dept Theoret Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden
[3] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden
来源
SCIPOST PHYSICS CORE | 2021年 / 4卷 / 02期
基金
瑞典研究理事会;
关键词
INVARIANT PARTITION-FUNCTIONS; MAJORANA FERMIONS; SPIN-CHAIN; SYMMETRY; SPECTRUM; MODEL;
D O I
10.21468/SciPostPhysCore.4.2.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct local generalizations of 3-state Potts models with exotic critical points. We analytically show that these are described by non-diagonal modular invariant partition functions of products of Z(3) parafermion or u (1)(6) conformal field theories (CFTs). These correspond either to non-trivial permutation invariants or block diagonal invariants, that one can understand in terms of anyon condensation. In terms of lattice parafermion operators, the constructed models correspond to parafermion chains with many-body terms. Our construction is based on how the partition function of a CFT depends on symmetry sectors and boundary conditions. This enables to write the partition function corresponding to one modular invariant as a linear combination of another over different sectors and boundary conditions, which translates to a general recipe how to write down a microscopic model, tuned to criticality. We show that the scheme can also be extended to construct critical generalizations of k-state clock type models.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Many-Body Quantum Magic
    Liu, Zi-Wen
    Winter, Andreas
    PRX QUANTUM, 2022, 3 (02):
  • [22] Cooling through quantum criticality and many-body effects in condensed matter and cold gases
    Wolf, Bernd
    Honecker, Andreas
    Hofstetter, Walter
    Tutsch, Ulrich
    Lang, Michael
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (26):
  • [23] Extracting signatures of quantum criticality in the finite-temperature behavior of many-body systems
    Cuccoli, Alessandro
    Taiti, Alessio
    Vaia, Ruggero
    Verrucchi, Paola
    PHYSICAL REVIEW B, 2007, 76 (06)
  • [24] A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains
    Popkov, V
    Fouladvand, ME
    Schütz, GM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (33): : 7187 - 7204
  • [25] Many-body localization transition in large quantum spin chains: The mobility edge
    Chanda, Titas
    Sierant, Piotr
    Zakrzewski, Jakub
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [26] Quantum many-body scar models in one-dimensional spin chains
    Wang, Jia-Wei
    Zhou, Xiang -Fa
    Guo, Guang-Can
    Zhou, Zheng-Wei
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [27] Many-Body Magic Via Pauli-Markov Chains-From Criticality to Gauge Theories
    Tarabunga, Poetri Sonya
    Tirrito, Emanuele
    Chanda, Titas
    Dalmonte, Marcello
    PRX QUANTUM, 2023, 4 (04):
  • [28] Bridging quantum many-body scars and quantum integrability in Ising chains with transverse and longitudinal fields
    Peng, Cheng
    Cui, Xiaoling
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [29] Many-body quantum boomerang effect
    Janarek, Jakub
    Zakrzewski, Jakub
    Delande, Dominique
    PHYSICAL REVIEW B, 2023, 107 (09)
  • [30] Asymptotic Quantum Many-Body Scars
    Gotta, Lorenzo
    Moudgalya, Sanjay
    Mazza, Leonardo
    PHYSICAL REVIEW LETTERS, 2023, 131 (19)