Learning similarity for semantic images classification

被引:9
|
作者
Wang, DH [1 ]
Lim, JS
Han, MM
Lee, BW
机构
[1] La Trobe Univ, Dept Comp Sci & Comp Engn, Melbourne, Vic 3086, Australia
[2] Kyungwon Univ, Software Coll, Seongnam 405760, Gyeonggido, South Korea
关键词
neural networks; learning similarity; image classification; k-NN rule; robustness;
D O I
10.1016/j.neucom.2004.10.114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While people compare images using semantic concepts, computers compare images using low-level visual features that sometimes have little to do with these semantics. To reduce the gap between the high-level semantics of visual objects and the low-level features extracted from them, in this paper we develop a framework of learning similarity (LS) using neural networks for semantic image classification, where a LS-based k-nearest neighbors (k-NNL) classifier is employed to assign a label to an unknown image according to the majority of k most similar features. Experimental results on an image database show that the k-NNL classifier outperforms the Euclidean distance-based k-NN (k-NNE) classifier and back-propagation network classifiers (BPNC). (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 50 条
  • [41] Similarity Learning for Nearest Neighbor Classification
    Qamar, Ali Mustafa
    Gaussier, Eric
    Chevallet, Jean-Pierre
    Lim, Joo Hwee
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 983 - +
  • [42] Deep learning-based YOLO for semantic segmentation and classification of weld pool thermal images
    Jorge, Vinicius Lemes
    Bendaoud, Issam
    Soulie, Fabien
    Bordreuil, Cyril
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, 137 (7-8): : 3573 - 3585
  • [43] Classification of urban aerial images: A comparison between low-semantic descriptors and deep learning
    Arista-Jalife A.
    Calderón-Auza G.
    Fierro-Radilla A.
    Nakano M.
    Nakano, Mariko (mnakano@ipn.mx), 1600, Centro de Informacion Tecnologica (28): : 209 - 224
  • [44] Chinese semantic document classification based on strategies of semantic similarity computation and correlation analysis
    Yang, Shuo
    Wei, Ran
    Guo, Jingzhi
    Tan, Hengliang
    JOURNAL OF WEB SEMANTICS, 2020, 63
  • [45] Assisted learning for land use classification: The important role of semantic correlation between heterogeneous images
    Li, Wangbin
    Sun, Kaimin
    Li, Wenzhuo
    Huang, Xiao
    Wei, Jinjiang
    Chen, Yepei
    Cui, Wei
    Chen, Xueyu
    Lv, Xianwei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 208 : 158 - 175
  • [46] Semantic Similarity Analysis for Examination Questions Classification Using WordNet
    Goh, Thing Thing
    Jamaludin, Nor Azliana Akmal
    Mohamed, Hassan
    Ismail, Mohd Nazri
    Chua, Huangshen
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [47] LEARNING SEMANTIC KERNELS FOR SCENE CLASSIFICATION
    Zhang, Lei
    Zhen, Xiantong
    Han, Jiqing
    Xiang, Xuezhi
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [48] Learning for semantic classification of conceptual terms
    Punuru, Janardhana
    Chen, Jianhua
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 253 - 258
  • [49] Contrastive semantic similarity learning for image captioning evaluation
    Zeng, Chao
    Kwong, Sam
    Zhao, Tiesong
    Wang, Hanli
    INFORMATION SCIENCES, 2022, 609 : 913 - 930
  • [50] Learning Semantic and Visual Similarity for Endomicroscopy Video Retrieval
    Andre, Barbara
    Vercauteren, Tom
    Buchner, Anna M.
    Wallace, Michael B.
    Ayache, Nicholas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (06) : 1276 - 1288