On the existence of equiangular tight frames

被引:146
|
作者
Sustik, Matyas A. [1 ]
Tropp, Joel A.
Dhillon, Inderjit S.
Heath, Robert W., Jr.
机构
[1] Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Texas, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
equiangular lines; tight frame; harmonic frame; orthogonal vectors; eigenvalues; integer matrix; roots of unity; strongly regular graph;
D O I
10.1016/j.laa.2007.05.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An equiangular tight frame (ETF) is a d x N matrix that has unit-norm columns and orthogonal rows of norm root N/d. Its key property is that the absolute inner products between pairs of columns are (i) identical and (ii) as small as possible. ETFs have applications in communications, coding theory, and sparse approximation. Numerical experiments indicate that ETFs arise for very few pairs (d, N), and it is an important challenge to develop restrictions on the pairs for which they can exist. This article uses field theory to provide detailed conditions on real and complex ETFs. In particular, it describes restrictions on harmonic ETFs, a specific type of complex ETF that appears in applications. Finally, the article offers empirical evidence that these conditions are sharp or nearly sharp, especially in the real case. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:619 / 635
页数:17
相关论文
共 50 条
  • [11] Equiangular tight frames and unistochastic matrices
    Goyeneche, Dardo
    Turek, Ondrej
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (24)
  • [12] Equiangular Tight Frames From Hyperovals
    Fickus, Matthew
    Mixon, Dustin G.
    Jasper, John
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) : 5225 - 5236
  • [13] STOCHASTIC CONSTRUCTIONS OF EQUIANGULAR TIGHT FRAMES
    Isaacs, Jason C.
    2011 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP AND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP (DSP/SPE), 2011, : 66 - 71
  • [14] Lattices from equiangular tight frames
    Boettcher, Albrecht
    Fukshansky, Lenny
    Garcia, Stephan Ramon
    Maharaj, Hiren
    Needell, Deanna
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 395 - 420
  • [15] Mutually Unbiased Equiangular Tight Frames
    Fickus, Matthew
    Mayo, Benjamin R.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1656 - 1667
  • [16] Kirkman Equiangular Tight Frames and Codes
    Jasper, John
    Mixon, Dustin G.
    Fickus, Matthew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 170 - 181
  • [17] Equiangular tight frames with centroidal symmetry
    Fickus, Matthew
    Jasper, John
    Mixon, Dustin G.
    Peterson, Jesse D.
    Watson, Cody E.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 44 (02) : 476 - 496
  • [18] Equiangular tight frames that contain regular simplices
    Fickus, Matthew
    Jasper, John
    King, Emily J.
    Mixon, Dustin G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 98 - 138
  • [19] The entanglement criteria based on equiangular tight frames
    Shi, Xian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (07)
  • [20] Equiangular tight frames from Paley tournaments
    Renes, Joseph M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 497 - 501