A hybrid deep learning-based online energy management scheme for industrial microgrid

被引:30
|
作者
Lu, Renzhi [1 ,2 ]
Bai, Ruichang [1 ]
Ding, Yuemin [3 ]
Wei, Min [2 ,4 ]
Jiang, Junhui [5 ]
Sun, Mingyang [6 ]
Xiao, Feng [7 ]
Zhang, Hai-Tao [1 ,8 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7034 Trondheim, Norway
[4] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[5] Hanyang Univ, Dept Elect Syst Engn, Ansan 15588, South Korea
[6] Zhejiang Univ, Dept Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[7] North China Elect Power Univ, Sch Control & Comp Engn, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[8] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Online energy management; Demand response; Industrial microgrid; Deep learning; Convolutional neural network; Long short-term memory; DEMAND RESPONSE; FRAMEWORK; LOADS; PRICE; POWER; DISPATCH; MODEL;
D O I
10.1016/j.apenergy.2021.117857
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The fluctuations in electricity prices and intermittency of renewable energy systems necessitate the adoption of online energy management schemes in industrial microgrids. However, it is challenging to design effective and optimal online rolling horizon energy management strategies that can deliver assured optimality, subject to the uncertainties of volatile electricity prices and stochastic renewable resources. This paper presents an adaptable online energy management scheme for industrial microgrids that minimizes electricity costs while meeting production requirements by repeatedly solving an optimization problem over a moving control window, taking advantage of forecasted future prices and renewable energy profiles implemented by a hybrid deep learning model. The predicted values over the control horizon are assumed to be uncertain, and a multivariate Gaussian distribution is used to handle the variations in electricity prices and renewable resources around their predicted nominal values. Simulation results under different scenarios using real-world data verify the effectiveness of the proposed online energy management scheme, assessed by the corresponding gaps with respect to several selected benchmark strategies and the ideal boundaries of the best and worst known solutions. Furthermore, the robustness of the scheme is verified by considering severe errors in forecasted electricity prices and renewable profiles.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Distributed Deep Reinforcement Learning-Based Energy and Emission Management Strategy for Hybrid Electric Vehicles
    Tang, Xiaolin
    Chen, Jiaxin
    Liu, Teng
    Qin, Yechen
    Cao, Dongpu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 9922 - 9934
  • [22] A novel learning-based MPC with embedded profiles prediction for microgrid energy management
    Casagrande, V.
    Boem, F.
    IFAC PAPERSONLINE, 2023, 56 (02): : 7954 - 7959
  • [23] An Online Learning Method for Microgrid Energy Management Control
    Casagrande, Vittorio
    Ferianc, Martin
    Rodrigues, Miguel
    Boem, Francesca
    2023 31ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, MED, 2023, : 263 - 268
  • [24] Learning-based MPC using Differentiable Optimisation Layers for Microgrid Energy Management
    Casagrande, Vittorio
    Boem, Francesca
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [25] Differential Privacy for Deep Learning-based Online Energy Disaggregation System
    Xiao-Yu Zhang
    Kuenzel, Stefanie
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 904 - 908
  • [26] Deep reinforcement learning-based energy management strategies for energy-efficient driving of hybrid electric buses
    Wang, Kunyu
    Yang, Rong
    Huang, Wei
    Mo, Jinchuan
    Zhang, Song
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2023, 237 (08) : 1790 - 1804
  • [27] Data-Driven Online Energy Scheduling of a Microgrid Based on Deep Reinforcement Learning
    Ji, Ying
    Wang, Jianhui
    Xu, Jiacan
    Li, Donglin
    ENERGIES, 2021, 14 (08)
  • [28] Deep stochastic reinforcement learning-based energy management strategy for fuel cell hybrid electric vehicles
    Jouda, Basel
    Al-Mahasneh, Ahmad Jobran
    Abu Mallouh, Mohammed
    ENERGY CONVERSION AND MANAGEMENT, 2024, 301
  • [29] A Deep Learning-Based Sepsis Estimation Scheme
    Al-Mualemi, Bilal Yaseen
    Lu, Lu
    IEEE ACCESS, 2021, 9 : 5442 - 5452
  • [30] A Comparative Study of Deep Reinforcement Learning-based Transferable Energy Management Strategies for Hybrid Electric Vehicles
    Xu, Jingyi
    Li, Zirui
    Gao, Li
    Ma, Junyi
    Liu, Qi
    Zhao, Yanan
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 470 - 477