Positive blending Hermite rational cubic spline fractal interpolation surfaces

被引:15
|
作者
Chand, A. K. B. [1 ]
Vijender, N. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Fractals; Iterated function systems; Fractal interpolation functions; Blending functions; Fractal interpolation surfaces; Positivity; VISUALIZATION;
D O I
10.1007/s10092-013-0105-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal interpolation provides an efficient way to describe data that have smooth and non-smooth structures. Based on the theory of fractal interpolation functions (FIFs), the Hermite rational cubic spline FIFs (fractal boundary curves) are constructed to approximate an original function along the grid lines of interpolation domain. Then the blending Hermite rational cubic spline fractal interpolation surface (FIS) is generated by using the blending functions with these fractal boundary curves. The convergence of the Hermite rational cubic spline FIS towards an original function is studied. The scaling factors and shape parameters involved in fractal boundary curves are constrained suitably such that these fractal boundary curves are positive whenever the given interpolation data along the grid lines are positive. Our Hermite blending rational cubic spline FIS is positive whenever the corresponding fractal boundary curves are positive. Various collections of fractal boundary curves can be adapted with suitable modifications in the associated scaling parameters or/and shape parameters, and consequently our construction allows interactive alteration in the shape of rational FIS.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [41] Visualization of positive data by rational cubic spline interpolant
    Sarfraz, Muhammad
    Hussain, Malik Zawwar
    Shaikh, Tahira Sumbal
    2010 14TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2010), 2010, : 564 - 569
  • [42] Fitting and Smoothing Data Using Algebraic Hyperbolic Cubic Hermite Spline Interpolation
    Oraiche, Mohammed
    Lamnii, Abdellah
    Louzar, Mohamed
    Madark, Mhamed
    ENGINEERING LETTERS, 2022, 30 (02)
  • [43] Shape preserving rational cubic trigonometric fractal interpolation functions
    Tyada, K. R.
    Chand, A. K. B.
    Sajid, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 866 - 891
  • [44] Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions
    Chand, A. K. B.
    Tyada, K. R.
    MATHEMATICS AND COMPUTING, 2015, 139 : 187 - 202
  • [45] Some results on the space of rational cubic fractal interpolation functions
    Balasubramani, N.
    Luor, Dah-Chin
    JOURNAL OF ANALYSIS, 2024, 32 (5): : 2433 - 2461
  • [46] CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS
    Chand, A. K. B.
    Tyada, K. R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 75 - 105
  • [47] Rational quadratic trigonometric spline fractal interpolation functions with variable scalings
    A. K. B. Vijay
    The European Physical Journal Special Topics, 2023, 232 : 1001 - 1013
  • [48] Rational quadratic trigonometric spline fractal interpolation functions with variable scalings
    Vijay, A. K. B.
    Chand, A. K. B.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1001 - 1013
  • [49] Data Interpolation Using Rational Cubic Ball Spline With Three Parameters
    Karim, Samsul Ariffin Abdul
    PROCEEDING OF THE 4TH INTERNATIONAL CONFERENCE OF FUNDAMENTAL AND APPLIED SCIENCES 2016 (ICFAS2016), 2016, 1787
  • [50] Positivity Preserving Interpolation of Positive Data by Cubic Trigonometric Spline
    Abbas, Muhammad
    Abd Majid, Ahmad
    Ali, Jamaludin Md.
    MATEMATIKA, 2011, 27 (01) : 41 - 50