Intersections of homogeneous Cantor sets and beta-expansions

被引:38
|
作者
Kong, Derong [1 ,2 ,3 ]
Li, Wenxia [1 ]
Dekking, F. Michel [2 ,3 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Delft Univ Technol, Fac EWI, NL-2600 GA Delft, Netherlands
[3] Thomas Stieltjes Inst Math, NL-2600 GA Delft, Netherlands
基金
中国国家自然科学基金;
关键词
SELF-SIMILAR STRUCTURE; UNIQUE EXPANSIONS; NUMBERS;
D O I
10.1088/0951-7715/23/11/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma(beta,N) be the N-part homogeneous Cantor set with beta is an element of (1/(2N - 1), 1/N). Any string (j(l))(l=1)(infinity) with j(l) is an element of {0, +/- 1, ... , +/- (N - 1)} such that t = Sigma(infinity)(l=1) j(l)beta(l) (1)(1 - beta)/(N - 1) is called a code of t. Let U-beta,U-+/- N be the set of t is an element of [-1, 1] having a unique code, and let S-beta,S-+/- N be the set of t is an element of U-beta,U-+/- N which makes the intersection Gamma(beta,N), boolean AND (Gamma(beta,N) + t) a self-similar set. We characterize the set U-beta,U-+/- N in a geometrical and algebraical way, and give a sufficient and necessary condition for t is an element of S-beta,S-+/- N. Using techniques from beta-expansions, we show that there is a critical point beta(c) is an element of (1/(2N - 1), 1/N), which is a transcendental number, such that U-beta,U-+/- N has positive Hausdorff dimension if beta is an element of (1/(2N - 1), beta(c)), and contains countably infinite many elements if beta is an element of (beta(c), 1/N). Moreover, there exists a second critical point alpha(c) = [N + 1 - root(N -1)(N + 3)]/2 is an element of (1/(2N - 1), beta(c)) such that S-beta,S-perpendicular to N has positive Hausdorff dimension if beta is an element of (1/(2N - 1), alpha(c)), and contains countably infinite many elements if beta is an element of [alpha(c), 1/N).
引用
收藏
页码:2815 / 2834
页数:20
相关论文
共 50 条
  • [41] Stable intersections of Cantor sets and homoclinic bifurcations
    Moreira, CGTD
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06): : 741 - 781
  • [42] Addition and multiplication of beta-expansions in generalized Tribonacci base
    Ambroz, Petr
    Masakova, Zuzana
    Pelantova, Edita
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (02): : 73 - 88
  • [43] Beta-expansions for infinite families of Pisot and Salem numbers
    Hare, Kevin G.
    Tweedle, David
    JOURNAL OF NUMBER THEORY, 2008, 128 (09) : 2756 - 2765
  • [44] ON THE SUM OF TWO HOMOGENEOUS CANTOR SETS
    Pourbarat, Mehdi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (06) : 1745 - 1766
  • [45] ARITHMETICAL PROPERTIES OF REAL NUMBERS RELATED TO BETA-EXPANSIONS
    Kaneko, Hajime
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 60 (02) : 195 - 226
  • [46] BASE PHI REPRESENTATIONS AND GOLDEN MEAN BETA-EXPANSIONS
    Dekking, F. Michel
    FIBONACCI QUARTERLY, 2020, 58 (01): : 38 - 48
  • [47] SUMS OF TWO HOMOGENEOUS CANTOR SETS
    Takahashi, Yuki
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 1817 - 1832
  • [48] Beta-expansions of rational numbers in quadratic Pisot bases
    Hejda, Tomas
    Steiner, Wolfgang
    ACTA ARITHMETICA, 2018, 183 (01) : 35 - 51
  • [49] Addition and multiplication of beta-expansions in generalized Tribonacci base
    Department of Mathematic, Doppler Institute, Czech Technical University, Trojanova 13, 120 00 Praha 2, Czech Republic
    Discrete Math. Theor. Comput. Sci., 2007, 2 (73-88):
  • [50] Multiple tilings associated to d-Bonacci beta-expansions
    Hejda, Tomas
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (02): : 275 - 291