Charge Dynamics at Surface-Modified, Nanostructured Hematite Photoelectrodes for Solar Water Splitting

被引:0
|
作者
Vega-Poot, Alberto [1 ,2 ]
Rodriguez-Perez, Manuel [3 ]
Becerril-Gonzalez, Juan [1 ]
Rodriguez-Gutierrez, Ingrid [1 ,4 ,5 ]
Su, Jinzhan [4 ]
Rodriguez-Gattorno, Geonel [1 ]
Teoh, Wey Yang [6 ,7 ]
Oskam, Gerko [1 ,8 ]
机构
[1] CINVESTAV IPN, Dept Appl Phys, Antigua Carretera Progreso Km 6, Merida 97310, Yucatan, Mexico
[2] Univ Modelo Merida, Carretera Cholul,200 M Pertfer, Merida, Yucatan, Mexico
[3] Univ Autonoma Campeche, Fac Ingn, Campus 5, San Francisco Campeche 24085, Mexico
[4] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[5] Fed Univ ABC UFABC, Lab Alternat Energy & Nanomat, Humanities & Nat Sci Ctr CCNH, Santo Andre, SP, Brazil
[6] Univ Malaya, Ctr Separat Sci & Technol, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[7] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[8] Univ Pablo de Olavide, Dept Phys Chem & Nat Syst, Seville 41013, Spain
基金
澳大利亚研究理事会;
关键词
IRON-OXIDE; OXIDATION; PHOTOANODES; PERFORMANCE; EFFICIENT; STATES; CO;
D O I
10.1149/1945-7111/ac700b
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The balance of the charge transfer and recombination kinetics of photoelectrodes governs the device efficiency for solar water splitting. Hematite (alpha-Fe2O3) is a photoanode typically used because of advantages such as its abundance, low cost, multiple convenient deposition methods, and an attractive bandgap energy; however, poor electrical properties prevent high solar energy to hydrogen conversion efficiencies. In this work, we evaluate and compare several strategies to address this issue, using a nanorod array morphology and incorporation of overlayers of one or more materials that favor the charge carrier transfer kinetics and reduce surface recombination. We use intensity-modulated photocurrent spectroscopy (IMPS) to evaluate these systems, and demonstrate that the presence of TiO2 and MoO x overlayers successfully suppresses surface recombination through passivation of hematite interfacial recombination sites. However, the hole transfer process at the overlayers occurs at more positive potentials due to the location of the new surface states at the overlayer-electrolyte interface. We show that the deposition of the CoPi oxygen evolution reaction co-catalyst partially addresses this disadvantage. The best efficiencies were obtained for the CoPi-TiO2/alpha-Fe2O3 and CoPi-MoO x /TiO2/alpha-Fe2O3 photoelectrodes, with internal quantum efficiencies of 0.42-0.44 under 455 nm irradiation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Hematite Nanowire and Nanoflake-Decorated Photoelectrodes: Implications for Photoelectrochemical Water Splitting
    Chnani, Ahmed
    Strehle, Steffen
    ACS APPLIED NANO MATERIALS, 2022, 5 (01) : 1016 - 1022
  • [42] Thermal enhancement of water affinity on the surface of undoped hematite photoelectrodes
    Carvalho-, Waldemir M., Jr.
    Souza, Flavio L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 395 - 404
  • [43] Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics
    Shen, Shaohua
    Lindley, Sarah A.
    Chen, Xiangyan
    Zhang, Jin Z.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (09) : 2744 - 2775
  • [44] SIMS characterization of surface-modified nanostructured titania electrodes for solar energy conversion devices
    Vitale, Stefania
    Zappala, Gabriella
    Tuccitto, Nunzio
    Torrisi, Alberto
    Napolitani, Enrico
    Licciardello, Antonino
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (03):
  • [45] Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes
    Mishra, P. R.
    Shukla, P. K.
    Srivastava, O. N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (12) : 1680 - 1685
  • [46] Photoelectrochemical properties of InN nanowire photoelectrodes for solar water splitting
    Kamimura, J.
    Bogdanoff, P.
    Ramsteiner, M.
    Geelhaar, L.
    Riechert, H.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (07)
  • [47] Surface restructuring of hematite photoanodes through ultrathin NiFeOx Catalyst: Amplified charge collection for solar water splitting and pollutant degradation
    Seenivasan, Selvaraj
    Adhikari, Sangeeta
    Kim, Do-Heyoung
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [48] Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting
    Kang, Donghyeon
    Kim, Tae Woo
    Kubota, Stephen R.
    Cardiel, Allison C.
    Cha, Hyun Gil
    Choi, Kyoung-Shin
    CHEMICAL REVIEWS, 2015, 115 (23) : 12839 - 12887
  • [49] Surface-oxidized titanium diboride as cocatalyst on hematite photoanode for solar water splitting
    Wu, Qiannan
    Liang, Xiao
    Chen, Hui
    Yang, Lan
    Xie, Tengfeng
    Zou, Xiaoxin
    CRYSTENGCOMM, 2022, 24 (12) : 2251 - 2257
  • [50] Hematite nanostructures for high efficient solar water splitting
    Deng, J. J.
    Pu, A. W.
    Li, M.
    Gao, J.
    Zhang, H.
    Zhong, J.
    Sun, X. H.
    2014 IEEE 14TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2014, : 75 - 78