An Online Network Intrusion Detection Model Based on Improved Regularized Extreme Learning Machine

被引:7
|
作者
Tang, Yanqiang [1 ]
Li, Chenghai [1 ]
机构
[1] Air Force Engn Univ, Air & Missile Def Coll, Xian 710051, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Extreme learning machines; Training; Heuristic algorithms; Classification algorithms; Optimization; Adaptation models; Topology; Online regularized extreme learning machine; sequential learning; intrusion detection; improved particle swarm optimization; network security;
D O I
10.1109/ACCESS.2021.3093313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extreme learning machine (ELM) is a novel single-hidden layer feedforward neural network to obtain fast learning speed by randomly initializing weights and deviations. Due to its extremely fast learning speed, it has been widely used in training of massive data in recent years. In order to adapt to the real network environment, based on the ELM, we propose an improved particle swarm optimized online regularized extreme learning machine (IPSO-IRELM) intrusion detection algorithm model. First, the model replaces the traditional batch learning with sequential learning by dynamically adapting the new data obtained in the training network instead of training all collected samples in an offline manner; second, we improve the particle swarm optimization algorithm and compare it with typical improved algorithms to prove its effectiveness; finally, to solve the random initialization problem of IRELM, we use IPSO to optimize the initial weights and deviations of IRELM to improve the classification ability of IRELM. The experimental results show that IPSO-IRELM algorithm has better generalization ability, which not only improves the accuracy of intrusion detection, but also has certain recognition ability for minority class samples.
引用
收藏
页码:94826 / 94844
页数:19
相关论文
共 50 条
  • [41] Intrusion Detection Model based on Improved Support Vector Machine
    Yuan, Jingbo
    Li, Haixiao
    Ding, Shunli
    Cao, Limin
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 465 - 469
  • [42] Regularized Extreme Learning Machine
    Deng, Wanyu
    Zheng, Qinghua
    Chen, Lin
    2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 389 - 395
  • [43] Siamese Network Based Feature Learning for Improved Intrusion Detection
    Jmila, Houda
    Ibn Khedher, Mohamed
    Blanc, Gregory
    El Yacoubi, Mounim A.
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 377 - 389
  • [44] Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
    Wang, Zhendong
    Li, Zeyu
    Wang, Junling
    Li, Dahai
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [45] Research on millet origin identification model based on improved parrot optimizer optimized regularized extreme learning machine
    Gao, Peng
    Wang, Na
    Lu, Yang
    Liu, Jinming
    Wang, Guannan
    Hou, Rui
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2025, 141
  • [46] R-ELMNet: Regularized extreme learning machine network
    Zhang, Guanghao
    Li, Yue
    Cui, Dongshun
    Mao, Shangbo
    Huang, Guang-Bin
    NEURAL NETWORKS, 2020, 130 : 49 - 59
  • [47] Network Intrusion Detection Algorithm based on Improved Support Vector Machine
    Hu Jianhong
    2015 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA AND SMART CITY (ICITBS), 2016, : 523 - 526
  • [48] A Highly Efficient Intrusion Detection Method Based on Hierarchical Extreme Learning Machine
    Yu, Linyuan
    Liu, Yan
    Zhao, Wentao
    Liu, Qiang
    Qin, Jiaohua
    PROCEEDINGS OF ELM-2017, 2019, 10 : 317 - 326
  • [49] A Smart Grid AMI Intrusion Detection Strategy Based on Extreme Learning Machine
    Zhang, Ke
    Hu, Zhi
    Zhan, Yufei
    Wang, Xiaofen
    Guo, Keyi
    ENERGIES, 2020, 13 (18)
  • [50] Enhance Intrusion Detection in Computer Networks Based on Deep Extreme Learning Machine
    Khan, Muhammad Adnan
    Rehman, Abdur
    Khan, Khalid Masood
    Al Ghamdi, Mohammed A.
    Almotiri, Sultan H.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 467 - 480