Giant Magnetoconductance Oscillations in Hybrid Superconductor-Semiconductor Core/Shell Nanowire Devices

被引:19
|
作者
Guel, Oe [1 ,2 ]
Guenel, H. Y. [1 ,2 ,3 ]
Lueth, H. [1 ,2 ]
Rieger, T. [1 ,2 ]
Wenz, T. [1 ,2 ]
Haas, F. [1 ,2 ]
Lepsa, M. [1 ,2 ]
Panaitov, G. [2 ,4 ]
Gruetzmacher, D. [1 ,2 ]
Schaepers, Th. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Semicond Elect, D-52074 Aachen, Germany
[4] Forschungszentrum Julich, Peter Grunberg Inst PGI 8, D-52425 Julich, Germany
关键词
GaAS/InAs core/shell nanowires; magnetoconductance oscillations; Josephson effect; superconducting electrodes; Andreev reflection; reflectionless tunneling; CORE-SHELL NANOWIRES; ANDREEV REFLECTION; PHASE; INTERFACES; GROWTH;
D O I
10.1021/nl502598s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e(2)/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Phi(0)/2 = h/2e in contrast to the period of Phi(0) of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.
引用
收藏
页码:6269 / 6274
页数:6
相关论文
共 50 条
  • [21] Fabrication and characterization of mesoscopic superconductor-semiconductor hybrid structures
    Huber, R
    Rahman, F
    Thornton, TJ
    Norman, A
    Stradling, RA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (03): : 1244 - 1248
  • [22] Superconductor-semiconductor hybrid-circuit quantum electrodynamics
    Burkard, Guido
    Gullans, Michael J.
    Mi, Xiao
    Petta, Jason R.
    NATURE REVIEWS PHYSICS, 2020, 2 (03) : 129 - 140
  • [24] Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon
    Katsaros, G.
    Spathis, P.
    Stoffel, M.
    Fournel, F.
    Mongillo, M.
    Bouchiat, V.
    Lefloch, F.
    Rastelli, A.
    Schmidt, O. G.
    De Franceschi, S.
    NATURE NANOTECHNOLOGY, 2010, 5 (06) : 458 - 464
  • [25] Equilibrium Circular Photogalvanic Effect in a Hybrid Superconductor-Semiconductor System
    Mal'shukov, A. G.
    PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [26] Gate-modified giant Andreev backscattering in a superconductor-semiconductor junction
    Toyoda, E
    Takayanagi, H
    Nakano, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (06) : 1801 - 1806
  • [27] Thermal packaging limit for hybrid superconductor-semiconductor electronic circuits
    Hijikata, Kunio
    Flik, Markus I.
    Nagasaki, Takao
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1990, 56 (529): : 2747 - 2752
  • [28] Density of states of disordered topological superconductor-semiconductor hybrid nanowires
    Sau, Jay D.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2013, 88 (06):
  • [29] Distinguishing Majorana and quasi-Majorana bound states in a hybrid superconductor-semiconductor nanowire with inhomogeneous potential barriers
    Tian, Hongyu
    Ren, Chongdan
    RESULTS IN PHYSICS, 2021, 26
  • [30] Majorana quasi-particles and superconductor-semiconductor hybrid nanowires
    Yu Chun-Lin
    Zhang Hao
    ACTA PHYSICA SINICA, 2020, 69 (07)