Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection

被引:9
|
作者
Lourenco, Ines [1 ]
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Hu Xiaoming [2 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Engn Sci, Div Optimizat & Syst Theory, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Belief estimation; counter-adversarial systems; hidden Markov models; inverse decision making; inverse filtering; VARIANCE PORTFOLIO SELECTION;
D O I
10.1007/s11424-021-1247-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hidden Markov model (HMM) comprises a state with Markovian dynamics that can only be observed via noisy sensors. This paper considers three problems connected to HMMs, namely, inverse filtering, belief estimation from actions, and privacy enforcement in such a context. First, the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter. Next, the authors consider a rational decision-maker that forms a private belief (posterior distribution) on the state of the world by filtering private information. The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent. In the setting of adversarial systems, the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions. Applications range from financial portfolio investments to life science decision systems.
引用
收藏
页码:1801 / 1820
页数:20
相关论文
共 50 条
  • [21] PRIVACY PRESERVING PROBABILISTIC INFERENCE WITH HIDDEN MARKOV MODELS
    Pathak, Manas
    Rane, Shantanu
    Sun, Wei
    Raj, Bhiksha
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5868 - 5871
  • [22] Uncertainty and filtering of hidden Markov models in discrete time
    Cohen, Samuel N.
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2020, 5 (01)
  • [23] Robust filtering and propagation of uncertainty in hidden Markov models
    Allan, Andrew L.
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [24] Belief networks, hidden Markov models, and Markov random fields: A unifying view
    Smyth, P
    PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1261 - 1268
  • [25] S-estimation of hidden Markov models
    Farcomeni, Alessio
    Greco, Luca
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 57 - 80
  • [26] A framework for mixed estimation of hidden Markov models
    Dey, S
    Marcus, SI
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3473 - 3478
  • [27] S-estimation of hidden Markov models
    Alessio Farcomeni
    Luca Greco
    Computational Statistics, 2015, 30 : 57 - 80
  • [28] Shrinkage Estimation for Multivariate Hidden Markov Models
    Fiecas, Mark
    Franke, Juergen
    von Sachs, Rainer
    Kamgaing, Joseph Tadjuidje
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 424 - 435
  • [29] Minimax a posteriori estimation in the hidden Markov models
    Borisov, A. V.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (11) : 1917 - 1930
  • [30] Maximum spacing estimation for hidden Markov models
    Kristi Kuljus
    Bo Ranneby
    Statistical Inference for Stochastic Processes, 2025, 28 (1)