Three new upper bounds on the chromatic number

被引:4
|
作者
Soto, Maria [1 ]
Rossi, Andre [1 ]
Sevaux, Marc [1 ]
机构
[1] Univ Bretagne Sud, CNRS, UMR 3192, Ctr Rech,Lab STICC, F-56321 Lorient, France
关键词
Graph coloring; Chromatic number; Upper bounding scheme; COLORING GRAPHS; ALGORITHM;
D O I
10.1016/j.dam.2011.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces three new upper bounds on the chromatic number, without making any assumptions on the graph structure. The first one xi, is based on the number of edges and nodes, and is to be applied to any connected component of the graph, whereas zeta and eta are based on the degree of the nodes in the graph. The computation complexity of the three-bound computation is assessed. Theoretical and computational comparisons are also made with five well-known bounds from the literature, which demonstrate the superiority of the new upper bounds. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2281 / 2289
页数:9
相关论文
共 50 条
  • [21] A new upper bound on the cyclic chromatic number
    Borodin, O. V.
    Broersma, H. J.
    Glebov, A.
    van den Heuvel, J.
    JOURNAL OF GRAPH THEORY, 2007, 54 (01) : 58 - 72
  • [22] A NEW UPPER BOUND FOR THE LIST CHROMATIC NUMBER
    BOLLOBAS, B
    HIND, HR
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 65 - 75
  • [23] A new upper bound for the harmonious chromatic number
    Edwards, K
    JOURNAL OF GRAPH THEORY, 1998, 29 (04) : 257 - 261
  • [24] Algorithmic bounds for the chromatic number
    Schiermeyer, Ingo
    OPTIMIZATION, 2008, 57 (01) : 153 - 158
  • [25] Bounds on the Distinguishing Chromatic Number
    Collins, Karen L.
    Hovey, Mark
    Trenk, Ann N.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [26] Bounds on the Dynamic Chromatic Number of a Graph in Terms of its Chromatic Number
    Vlasova N.Y.
    Karpov D.V.
    Journal of Mathematical Sciences, 2018, 232 (1) : 21 - 24
  • [27] Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree
    Xiao Wang
    Baoyindureng Wu
    Journal of Combinatorial Optimization, 2017, 33 : 28 - 34
  • [28] Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree
    Wang, Xiao
    Wu, Baoyindureng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 28 - 34
  • [29] New bounds for the chromatic number of a space with forbidden isosceles triangles
    Samirov, D. V.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 313 - 316
  • [30] New bounds for the chromatic number of a space with forbidden isosceles triangles
    D. V. Samirov
    A. M. Raigorodskii
    Doklady Mathematics, 2014, 89 : 313 - 316