A nonlinear observability formulation for power systems incorporating generator dynamics

被引:0
|
作者
Dafis, CJ [1 ]
Nwankpa, CO [1 ]
机构
[1] Drexel Univ, CEPE, Philadelphia, PA 19104 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Traditionally, a nonlinear algebraic model of the power system is used to determine the system observability. In particular, the sensitivity of the system measurements (real and reactive power for example) to the change in the system states (bus voltages and angles) is used as a measure of observability, derived from the power system state-estimation problem. It ignores, however, the non-linear dynamics of the system related to generator performance, non-linear components, etc. The proposed observability formulation accounts for these non-linearities and provides a more comprehensive observability determination. The formulation is derived from a DAE model of the power system, and incorporates the dynamics of the generators present in the system.
引用
收藏
页码:277 / 280
页数:4
相关论文
共 50 条
  • [21] Observability of Nonlinear Fractional Dynamical Systems
    Balachandran, K.
    Govindaraj, V.
    Rivero, M.
    Tenreiro Machado, J. A.
    Trujillo, J. J.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] OBSERVABILITY OF AUTONOMOUS NONLINEAR-SYSTEMS
    INOUYE, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (01) : 236 - 247
  • [23] Observability of nonlinear differential algebraic systems
    William J. Terrell
    Circuits, Systems and Signal Processing, 1997, 16 : 271 - 285
  • [24] Observability of nonlinear systems with unmeasured inputs
    Maes, K.
    Chatzis, M. N.
    Lombaert, G.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 130 : 378 - 394
  • [25] OBSERVABILITY AND OBSERVERS FOR NONLINEAR-SYSTEMS
    GAUTHIER, JP
    KAZAKOS, D
    RAIRO-AUTOMATIQUE-PRODUCTIQUE INFORMATIQUE INDUSTRIELLE-AUTOMATIC CONTROL PRODUCTION SYSTEMS, 1988, 22 (02): : 201 - 212
  • [26] OBSERVABILITY UNDER SAMPLING FOR NONLINEAR SYSTEMS
    Ammar, Sabeur
    Massaoud, Majid
    Vivalda, Jean-Claude
    ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1269 - 1278
  • [27] OBSERVABILITY OF NONLINEAR DISCRETE-SYSTEMS
    ROITENBERG, EY
    SELUNSKY, VM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1978, (05): : 68 - 73
  • [28] LOCAL OBSERVABILITY OF NONLINEAR-SYSTEMS
    BARTOSIEWICZ, Z
    SYSTEMS & CONTROL LETTERS, 1995, 25 (04) : 295 - 298
  • [29] Observability of nonlinear systems - An algebraic approach
    Tibken, B
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4824 - 4825
  • [30] Observability functions for linear and nonlinear systems
    Gray, WS
    Mesko, JE
    SYSTEMS & CONTROL LETTERS, 1999, 38 (02) : 99 - 113