Centres of monoidal categories of functors

被引:0
|
作者
Day, Brian [1 ]
Street, Ross [2 ]
机构
[1] Univ Sydney, Sydney, NSW 2006, Australia
[2] Macquarie Univ, N Ryde, NSW 2109, Australia
关键词
monoidal category; braiding; centre; promonad; promonoidal category; Hopf algebra; fibration; convolution; Kleisli construction; enriched category;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper explores when the (lax) centre of a closed monoidal (enriched) functor category is again a functor category. For some of this, we exploit the Kleisli construction in the bicategory of modules between enriched categories. We look at (lax) centres of reflective full subcategories of monoidal functor categories. A result is obtained concerning the centre of the pointwise tensor product structure on the category of functors from a groupoid to a wide class of monoidal categories.
引用
收藏
页码:187 / +
页数:3
相关论文
共 50 条
  • [31] LANGUAGES FOR MONOIDAL CATEGORIES
    JAY, CB
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (01) : 61 - 85
  • [32] DOUBLES FOR MONOIDAL CATEGORIES
    Pastro, Craig
    Street, Ross
    THEORY AND APPLICATIONS OF CATEGORIES, 2008, 21 : 61 - 75
  • [33] ADJUNCTIONS IN MONOIDAL CATEGORIES
    LINDNER, H
    MANUSCRIPTA MATHEMATICA, 1978, 26 (1-2) : 123 - 139
  • [34] A note on the biadjunction between 2-categories of traced monoidal categories and tortile monoidal categories
    Hasegawa, Masahito
    Katsumata, Shin-Ya
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 107 - 109
  • [35] ON ENDOMORPHISM ALGEBRAS OF SEPARABLE MONOIDAL FUNCTORS
    Day, Brian
    Pastro, Craig
    THEORY AND APPLICATIONS OF CATEGORIES, 2009, 22 : 77 - 96
  • [36] Autonomization of monoidal categories
    Delpeuch, Antonin
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (323): : 24 - 43
  • [37] Involutive Monoidal Categories
    Yau, Donald
    INVOLUTIVE CATEGORY THEORY, 2020, 2279 : 71 - 105
  • [38] Traced monoidal categories
    Joyal, A
    Street, R
    Verity, D
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 : 447 - 468
  • [39] DESCENT IN MONOIDAL CATEGORIES
    Mesablishvili, Bachuki
    THEORY AND APPLICATIONS OF CATEGORIES, 2012, 27 : 210 - 221
  • [40] BIPRODUCTS IN MONOIDAL CATEGORIES
    Zekic, Mladen
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2021, 110 (124): : 1 - 9