Beyond 2D: 3D bioprinting for skin regeneration

被引:28
|
作者
Wang, Rui [1 ,2 ,3 ]
Wang, Yihui [1 ,2 ,3 ]
Yao, Bin [2 ,3 ,4 ]
Hu, Tian [2 ,3 ,4 ]
Li, Zhao [5 ]
Huang, Sha [2 ,3 ,5 ]
Fu, Xiaobing [2 ,3 ,5 ]
机构
[1] Tianjin Med Univ, Tianjin, Peoples R China
[2] Gen Hosp PLA, Hosp Affiliated 1, Key Lab Tissue Repair & Regenerat PLA, Beijing 100048, Peoples R China
[3] Gen Hosp PLA, Hosp Affiliated 1, Beijing Key Res Lab Skin Injury Repair & Regenera, Beijing, Peoples R China
[4] Nankai Univ, Sch Med, Tianjin, Peoples R China
[5] Gen Hosp PLA, Inst Basic Med Sci, Wound Healing & Cell Biol Lab, Beijing 100853, Peoples R China
基金
国家重点研发计划;
关键词
3D bioprinting; extracellular matrices; skin regeneration; EXTRACELLULAR-MATRIX; CROSS-LINKING; STEM-CELLS; COLLAGEN; FABRICATION; FUTURE;
D O I
10.1111/iwj.13003
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Essential cellular functions that are present in tissues are missed by two-dimensional (2D) cell monolayer culture. It certainly limits their potential to predict the cellular responses of real organisms. Engineering approaches offer solutions to overcome current limitations. For example, establishing a three-dimensional (3D)-based matrix is motivated by the need to mimic the functions of living tissues, which will have a strong impact on regenerative medicine. However, as a novel approach, it requires the development of new standard protocols to increase the efficiency of clinical translation. In this review, we summarised the various aspects of requirements related to well-suited 3D bioprinting techniques for skin regeneration and discussed how to overcome current bottlenecks and propel these therapies into the clinic.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 50 条
  • [41] Beyond 2D images: Effective 3D imaging for library materials
    Brown, Michael S.
    Seales, W.Brent
    2000, ACM, New York, NY, United States
  • [42] The Patent Landscape Analysis of Skin Bioinks for 3D Bioprinting
    Borzova, E.
    Cardeal, G.
    Soperna, S.
    Zhao, J.
    Lepekhova, A.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (12) : S281 - S281
  • [43] 3D bioprinting strategies for in vitro modeling of diseased skin
    Kim, Byoung Soo
    TISSUE ENGINEERING PART A, 2022, 28 : 208 - 208
  • [44] 3D Bioprinting-Assisted Tissue Assembly of Endocrine Adipose Units for Enhanced Skin Regeneration
    Lee, Jae-Seong
    Ahn, Minjun
    Kim, Byoung Soo
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [45] 21/2D or 3D?
    Roth, S
    Küster, B
    Sura, H
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (07): : 65 - 67
  • [46] 2D and 3D on demand
    Philippi, Anne
    F & M; Feinwerktechnik, Mikrotechnik, Messtechnik, 1998, 106 (06): : 412 - 414
  • [47] From 2D to 3D
    Steven De Feyter
    Nature Chemistry, 2011, 3 (1) : 14 - 15
  • [48] Interactions of silver nanoparticles with 2D and 3D human skin models
    Deller, R.
    Aveyard, J.
    Williams, R.
    D'Sa, R.
    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, 2019, 100 (04) : A16 - A17
  • [49] Measuring Surface Area of Skin Lesions with 2D and 3D Algorithms
    Dastjerdi, Houman Mirzaalian
    Toepfer, Dominique
    Rupitsch, Stefan J.
    Maier, Andreas
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2019, 2019
  • [50] 3D Bioprinting for Vascularization
    Mir, Amatullah
    Lee, Eugenia
    Shih, Wesley
    Koljaka, Sarah
    Wang, Anya
    Jorgensen, Caitlin
    Hurr, Riley
    Dave, Amartya
    Sudheendra, Krupa
    Hibino, Narutoshi
    BIOENGINEERING-BASEL, 2023, 10 (05):