Reproducible feature selection in high-dimensional accelerated failure time models

被引:4
|
作者
Dong, Yan [1 ]
Li, Daoji [2 ]
Zheng, Zemin [1 ]
Zhou, Jia [1 ]
机构
[1] Univ Sci & Technol China, Int Inst Finance, Sch Management, Hefei 230026, Peoples R China
[2] Calif State Univ, Dept Informat Syst & Decis Sci, Fullerton, CA 92831 USA
基金
中国国家自然科学基金;
关键词
Feature selection; Accelerated failure time models; False discovery rate; High dimensionality; Knockoffs; FALSE DISCOVERY RATE;
D O I
10.1016/j.spl.2021.109275
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new feature selection procedure with guaranteed FDR control for high-dimensional AFT models, which is among the first attempts of reproducible learning in survival analysis. The effectiveness of the proposed method is theoretically and numerically demonstrated. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] l0-Regularized high-dimensional accelerated failure time model
    Cheng, Chao
    Feng, Xingdong
    Huang, Jian
    Jiao, Yuling
    Zhang, Shuang
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [22] A fast algorithm for the accelerated failure time model with high-dimensional time-to-event data
    Choi, Taehwa
    Choi, Sangbum
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (16) : 3385 - 3403
  • [23] Neighborhood Component Feature Selection for High-Dimensional Data
    Yang, Wei
    Wang, Kuanquan
    Zuo, Wangmeng
    JOURNAL OF COMPUTERS, 2012, 7 (01) : 161 - 168
  • [24] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804
  • [25] Optimal Feature Selection in High-Dimensional Discriminant Analysis
    Kolar, Mladen
    Liu, Han
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 1063 - 1083
  • [26] Improved PSO for feature selection on high-dimensional datasets
    Tran, Binh (binh.tran@ecs.vuw.ac.nz), 1600, Springer Verlag (8886):
  • [27] Linear-mixed effects models for feature selection in high-dimensional NMR spectra
    Mei, Yajun
    Kim, Seoung Bum
    Tsui, Kwok-Leung
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 4703 - 4708
  • [28] A semi-parametric approach to feature selection in high-dimensional linear regression models
    Liu, Yuyang
    Pi, Pengfei
    Luo, Shan
    COMPUTATIONAL STATISTICS, 2023, 38 (02) : 979 - 1000
  • [29] Improved PSO for Feature Selection on High-Dimensional Datasets
    Tran, Binh
    Xue, Bing
    Zhang, Mengjie
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 503 - 515
  • [30] On the scalability of feature selection methods on high-dimensional data
    V. Bolón-Canedo
    D. Rego-Fernández
    D. Peteiro-Barral
    A. Alonso-Betanzos
    B. Guijarro-Berdiñas
    N. Sánchez-Maroño
    Knowledge and Information Systems, 2018, 56 : 395 - 442