Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries

被引:47
|
作者
Wu, Tianlai [1 ,2 ]
Zhang, Weicai [1 ,2 ]
Yang, Jiaying [3 ,4 ]
Lu, Qiongqiong [5 ]
Peng, Jing [1 ,2 ]
Zheng, Mingtao [1 ,2 ]
Xu, Fei [3 ,4 ]
Liu, Yingliang [1 ,2 ]
Liang, Yeru [1 ,2 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Guangdong Prov Engn Technol Res Ctr Opt Agr, Key Lab Biobased Mat & Energy,Minist Educ, 483 Wushan Rd, Guangzhou 510642, Peoples R China
[2] Guangdong Lab Lingnan Modern Agr, Guangzhou, Peoples R China
[3] Northwestern Polytech Univ, Sch Mat Sci & Engn, Ctr Nano Energy Mat, State Key Lab Solidicat Proc, Xian 710072, Peoples R China
[4] Shaanxi Joint Lab Graphene NPU, Xian 710072, Peoples R China
[5] Leibniz Inst Solid State & Mat Res IFW Dresden, Dresden, Germany
基金
中国国家自然科学基金;
关键词
carbonaceous anodes; electronic conductivity; high-rate performance; ion diffusivity; potassium-ion batteries; METAL-ORGANIC FRAMEWORKS; DOPED HOLLOW CARBON; BINDER-FREE ANODE; K-ION; POROUS CARBON; CYCLE LIFE; SCALABLE SYNTHESIS; UNIVERSAL ANODE; RATE CAPABILITY; HIGH-CAPACITY;
D O I
10.1002/cey2.99
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery. Potassium-ion batteries (KIBs) are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources. Nevertheless, further development and wide application of KIBs are still challenged by several obstacles, one of which is their fast capacity deterioration at high rates. A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies. This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs, and also the beneficial conceptions are consciously extracted from the recent progress. Particularly, basic insights into the recent engineering strategies, structural innovation, and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns. Based on the achievements attained so far, a perspective on the foregoing, and proposed possible directions, and avenues for designing high-rate anodes, are presented finally.
引用
收藏
页码:554 / 581
页数:28
相关论文
共 50 条
  • [21] KOH-TREATED MESOCARBON MICROBEADS USED AS HIGH-RATE ANODE MATERIALS FOR POTASSIUM-ION BATTERIES
    Xiao, Nan
    Guo, Hong-Da
    Xiao, Jian
    Wei, Yi-Bo
    Ma, Xiao-Qing
    Zhang, Xiao-Yu
    Qiu, Jie-Shan
    CARBON, 2023, 209
  • [22] KOH-treated mesocarbon microbeads used as high-rate anode materials for potassium-ion batteries
    Xiao, Nan
    Guo, Hong-da
    Xiao, Jian
    Wei, Yi-bo
    Ma, Xiao-qing
    Zhang, Xiao-yu
    Qiu, Jie-shan
    NEW CARBON MATERIALS, 2023, 38 (02) : 327 - 336
  • [23] Topological Defect-Regulated Porous Carbon Anodes with Fast Interfacial and Bulk Kinetics for High-Rate and High-Energy-Density Potassium-Ion Batteries
    Huang, Junlong
    Chen, Yongqi
    Cen, Zongheng
    Yi, Tan
    Liang, Min
    Zhu, Youlong
    Liu, Ruliang
    Fu, Ruowen
    Liu, Shaohong
    Wu, Dingcai
    ADVANCED MATERIALS, 2024, 36 (30)
  • [24] Insights into high capacity and ultrastable carbonaceous anodes for potassium-ion storage via a hierarchical heterostructure
    Ma, Chunrong
    Yang, Huijun
    Xu, Zhixin
    Fu, Zhengguang
    Xie, Yingying
    Zhang, Hongti
    Hong, Min
    Ma, ZiFeng
    Xiong, Hui
    Yuan, Xian-Zheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (05) : 2836 - 2842
  • [25] Advanced Carbon-Based Anodes for Potassium-Ion Batteries
    Wu, Xuan
    Chen, Yanli
    Xing, Zheng
    Lam, Christopher Wai Kei
    Pang, Su-Seng
    Zhang, Wei
    Ju, Zhicheng
    ADVANCED ENERGY MATERIALS, 2019, 9 (21)
  • [26] Rational design of carbon materials as anodes for potassium-ion batteries
    Wu, Yuanming
    Zhao, Haitao
    Wu, Zhenguo
    Yue, Luchao
    Liang, Jie
    Liu, Qian
    Luo, Yonglan
    Gao, Shuyan
    Lu, Siyu
    Chen, Guang
    Shi, Xifeng
    Zhong, Benhe
    Guo, Xiaodong
    Sun, Xuping
    ENERGY STORAGE MATERIALS, 2021, 34 : 483 - 507
  • [27] Rational design of carbon materials as anodes for potassium-ion batteries
    Wu, Yuanming
    Zhao, Haitao
    Wu, Zhenguo
    Yue, Luchao
    Liang, Jie
    Liu, Qian
    Luo, Yonglan
    Gao, Shuyan
    Lu, Siyu
    Chen, Guang
    Shi, Xifeng
    Zhong, Benhe
    Guo, Xiaodong
    Sun, Xuping
    Energy Storage Materials, 2021, 34 : 483 - 507
  • [28] Hard Carbon as Anodes for Potassium-Ion Batteries: Developments and Prospects
    Qiu, Peng
    Chen, Haohong
    Zhang, Hanzhi
    Wang, Han
    Wang, Lianhao
    Guo, Yingying
    Qi, Ji
    Yi, Yong
    Zhang, Guobin
    INORGANICS, 2024, 12 (12)
  • [29] Recent Progress and Perspectives on Alloying Anodes for Potassium-Ion Batteries
    Suo, Guoquan
    Cheng, Yan
    Zhang, Jiaqi
    Ahmed, Syed Musab
    CHEMNANOMAT, 2021, 7 (12): : 1291 - 1308
  • [30] Advances in bismuth-based anodes for potassium-ion batteries
    Jia, Jian Hui
    Lu, Xiao Feng
    Yang, Chun Cheng
    Jiang, Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (03) : 1359 - 1391