Effects of ultrasound irradiation on the synthesis of metal oxide nanostructures

被引:13
|
作者
Diez-Garcia, M. I. [1 ,2 ]
Manzi-Orezzoli, V. [1 ,2 ]
Jankulovska, M. [1 ,2 ]
Anandan, S. [3 ]
Bonete, P. [1 ,2 ]
Gomez, R. [1 ,2 ]
Lana-Villarreal, T. [1 ,2 ]
机构
[1] Univ Alacant, Inst Univ Electroquim, Apartat 99, E-03080 Alicante, Spain
[2] Univ Alacant, Dept Quim Fis, E-03080 Alicante, Spain
[3] Natl Inst Technol, Dept Chem, Nanomat & Solar Energy Convers Lab, Tiruchirappalli 620015, India
来源
43RD ANNUAL UIA SYMPOSIUM | 2015年 / 63卷
关键词
Ultrasound-assisted synthesis; metal oxide nanostructures; N-doped TiO2; NiTiO3; MnOx; ANODIZATION; NANOTUBES;
D O I
10.1016/j.phpro.2015.03.014
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
High intensity ultrasound can be used for the production of novel nanomaterials, including metal oxides. According to previous works in this field, the most notable effects are consequence of acoustic cavitation. In this context, we have studied the preparation of different materials in the presence of ultrasound, including N-doped TiO2 nanopowder, NiTiO3 nanorods and MnOx thin films. Ultrasound did not show a significant effect in all the cases. Exclusively for NiTiO3 nanorods a reduction of the final particle size occurs upon ultrasonic irradiation. From these results, it can be concluded that the ultrasound irradiation does not always play a key role during the synthesis of metal oxides. The effects seem to be particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogenous dispersion. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [41] Alkaline Metal Reagent-Assisted Synthesis of Monodisperse Iron Oxide Nanostructures
    Lee, Kwan
    Lee, Sangyeob
    Oh, Min Chul
    Ahn, Byungmin
    METALS, 2018, 8 (02):
  • [42] Synthesis of bismuth oxide nanostructures by an oxidative metal vapour phase deposition technique
    Kumari, Latha
    Lin, Jin-Han
    Ma, Yuan-Ron
    NANOTECHNOLOGY, 2007, 18 (29)
  • [43] Alginate-mediated routes to the selective synthesis of complex metal oxide nanostructures
    Schnepp, Zoe
    Wimbush, Stuart C.
    Mann, Stephen
    Hall, Simon R.
    CRYSTENGCOMM, 2010, 12 (05): : 1410 - 1415
  • [44] Controlled Synthesis of Different Metal Oxide Nanostructures by Direct Current Arc Discharge
    Su, Yanjie
    Zhang, Jing
    Zhang, Liling
    Zhang, Yafei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) : 1078 - 1081
  • [45] Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors
    Maciulis, Vincentas
    Ramanaviciene, Almira
    Plikusiene, Ieva
    NANOMATERIALS, 2022, 12 (24)
  • [46] Optimization of Metal Oxide Nanostructures via Two-Step Hydrothermal Synthesis
    Anthony, Leonard Sean
    Perumal, Veeradasan
    2019 17TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2019, : 248 - 252
  • [47] Understanding the Growth of Metal Oxide Nanostructures
    Zhang, Jin Z.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (19): : 2920 - 2921
  • [48] Strategies for designing metal oxide nanostructures
    Sun, Ziqi
    Liao, Ting
    Kou, Liangzhi
    SCIENCE CHINA-MATERIALS, 2017, 60 (01) : 1 - 24
  • [49] Metal oxide nanostructures for gas detection
    Maziarz, Wojciech
    Pisarkiewicz, Tadeusz
    Rydosz, Artur
    Wysocka, Kinga
    Czyrnek, Grzegorz
    ELECTRON TECHNOLOGY CONFERENCE 2013, 2013, 8902
  • [50] Metal oxide nanostructures for sensor applications
    Nunes, D.
    Pimentel, A.
    Goncalves, A.
    Pereira, S.
    Branquinho, R.
    Barquinha, P.
    Fortunato, E.
    Martins, R.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (04)