A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation

被引:173
|
作者
Grazioso, Stanislao [1 ,2 ]
Di Gironimo, Giuseppe [1 ,2 ]
Siciliano, Bruno [2 ,3 ]
机构
[1] Univ Naples Federico II, Dept Ind Engn, I-80125 Naples, Italy
[2] CREATE Consortium, I-80125 Naples, Italy
[3] Univ Naples Federico II, Dept Elect Engn & Informat Technol, PRISMA Lab, Naples, Italy
基金
欧洲研究理事会;
关键词
soft robotics; continuum robots; mathematical modeling; differential geometry; dynamics; Cosserat rods; HELICOIDAL APPROXIMATION; EUCLIDEAN GROUP; DESIGN; INTEGRATION; KINEMATICS; DYNAMICS; FABRICATION; STATICS;
D O I
10.1089/soro.2018.0047
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Mathematical modeling of soft robots is complicated by the description of the continuously deformable three-dimensional shape that they assume when subjected to external loads. In this article we present the deformation space formulation for soft robots dynamics, developed using a finite element approach. Starting from the Cosserat rod theory formulated on a Lie group, we derive a discrete model using a helicoidal shape function for the spatial discretization and a geometric scheme for the time integration of the robot shape configuration. The main motivation behind this work is the derivation of accurate and computational efficient models for soft robots. The model takes into account bending, torsion, shear, and axial deformations due to general external loading conditions. It is validated through analytic and experimental benchmark. The results demonstrate that the model matches experimental positions with errors <1% of the robot length. The computer implementation of the model results in SimSOFT, a dynamic simulation environment for design, analysis, and control of soft robots.
引用
收藏
页码:790 / 811
页数:22
相关论文
共 50 条
  • [21] Soft tissue deformation using a hierarchical finite element model
    Faraci, A
    Bello, F
    Darzi, A
    MEDICINE MEETS VIRTUAL REALITY 12: BUILDING A BETTER YOU: THE NEXT TOOLS FOR MEDICAL EDUCATION, DIAGNOSIS , AND CARE, 2004, 98 : 92 - 98
  • [22] Finite element dynamic analysis of geometrically exact planar beams
    Gams, M.
    Saje, M.
    Srpcic, S.
    Planinc, I.
    COMPUTERS & STRUCTURES, 2007, 85 (17-18) : 1409 - 1419
  • [23] Visual Servoing Control of Soft Robots based on Finite Element Model
    Zhang, Zhongkai
    Bieze, Thor Morales
    Dequidt, Jeremie
    Kruszewski, Alexandre
    Duriez, Christian
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2895 - 2901
  • [24] A geometrically exact beam element based on the absolute nodal coordinate formulation
    Gerstmayr, Johannes
    Matikainen, Marko K.
    Mikkola, Aki M.
    MULTIBODY SYSTEM DYNAMICS, 2008, 20 (04) : 359 - 384
  • [25] A weak form quadrature element formulation of geometrically exact strain shells
    Zhang, Run
    Chen, Tingrui
    Cheng, Jiahao
    Yao, Xiaohu
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 154
  • [26] A geometrically exact beam element based on the absolute nodal coordinate formulation
    Johannes Gerstmayr
    Marko K. Matikainen
    Aki M. Mikkola
    Multibody System Dynamics, 2008, 20
  • [27] A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures
    Santos, H. A. F. A.
    Pimenta, P. M.
    Almeida, J. P. M.
    COMPUTATIONAL MECHANICS, 2011, 48 (05) : 591 - 613
  • [28] A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures
    H. A. F. A. Santos
    P. M. Pimenta
    J. P. M. Almeida
    Computational Mechanics, 2011, 48 : 591 - 613
  • [29] Efficient finite difference formulation of a geometrically nonlinear beam element
    Jirasek, Milan
    Ribolla, Emma La Malfa
    Horak, Martin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (23) : 7013 - 7053
  • [30] A higher order formulation for geometrically nonlinear space beam element
    Gu, JX
    Chan, SL
    Zhou, ZH
    ADVANCES IN STEEL STRUCTURES, VOLS I & II, PROCEEDINGS, 2002, : 1153 - 1160