Effective and Efficient Identification of Persistent-state Hidden (semi-) Markov Models

被引:0
|
作者
Liu, Tingting [1 ]
Lemeire, Jan [1 ,2 ]
机构
[1] Vrije Univ Brussel, ETRO Dept, B-1050 Brussels, Belgium
[2] iMinds, Dept Multimedia Technol MMT, B-9050 Ghent, Belgium
来源
STAIRS 2014 | 2014年 / 264卷
关键词
hidden Markov models (HMMs); hidden semi-Markov models (HSMMs); Baum-Welch; local optima; model identification; PROBABILISTIC FUNCTIONS;
D O I
10.3233/978-1-61499-421-3-171
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The predominant learning strategy for H(S) MMs is local search heuristics, of which the Baum-Welch/expectation maximization (EM) algorithm is mostly used. It is an iterative learning procedure starting with a predefined topology and randomly-chosen initial parameters. However, state-of-the-art approaches based on arbitrarily defined state numbers and parameters can cause the risk of falling into a local optima and a low convergence speed with enormous number of iterations in learning which is computationally expensive. For models with persistent states, i.e. states with high self-transition probabilities, we propose a segmentation-based identification approach used as a pre-identification step to approximately estimate parameters based on segmentation and clustering techniques. The identified parameters serve as input of the Baum-Welch algorithm. Moreover, the proposed approach identifies automatically the state numbers. Experimental results conducted on both synthetic and real data show that the segmentation-based identification approach can identify H(S) MMs more accurately and faster than the current Baum-Welch algorithm.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 50 条
  • [41] Semi-tied covariance matrices for hidden Markov models
    Gales, MJF
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1999, 7 (03): : 272 - 281
  • [42] A Spectral Algorithm for Inference in Hidden semi-Markov Models
    Melnyk, Igor
    Banerjee, Arindam
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [43] Hierarchical Multi-channel Hidden Semi Markov Models
    Natarajan, Pradeep
    Nevatia, Ramakant
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2562 - 2567
  • [44] The evaluation problem in discrete semi-hidden Markov models
    Gomez-Lopera, J. F.
    Martinez-Aroza, J.
    Roman-Roldan, R.
    Roman-Galvez, R.
    Blanco-Navarro, D.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 350 - 365
  • [45] Semi-hidden Markov models for generation and analysis of sequences
    Roman-Galvez, R.
    Roman-Roldan, R.
    Martinez-Aroza, J.
    Gomez-Lopera, J. F.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 320 - 328
  • [46] Maximum likelihood estimation for hidden semi-Markov models
    Barbu, V
    Limnios, N
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 201 - 205
  • [47] Nonhomogeneous hidden semi-Markov models for toroidal data
    Lagona, Francesco
    Mingione, Marco
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024,
  • [48] UXO target area identification with hidden Markov models
    McKenna, Sean A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (02) : 193 - 202
  • [49] Evaluation of Spectral Learning for the Identification of Hidden Markov Models
    Mattila, Robert
    Rojas, Cristian R.
    Wahlberg, Bo
    IFAC PAPERSONLINE, 2015, 48 (28): : 897 - 902
  • [50] Hidden Markov models applied to snakes behavior identification
    Gonqalves, Wesley Nunes
    Silva, Jonathan de Andrade
    Machado, Bruno Brandoli
    Pistori, Hernerson
    de Souza, Albert Schiaveto
    ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2007, 4872 : 777 - 787