Catalytic dehydrogenation of hydrogen-rich liquid organic hydrogen carriers by palladium oxide supported on activated carbon

被引:33
|
作者
Shuang, Huili [1 ,2 ]
Chen, Hao [1 ]
Wu, Fei [3 ,4 ]
Li, Jing [1 ]
Cheng, Chen [3 ,4 ]
Li, Haigang [3 ,4 ]
Fu, Jie [1 ,2 ]
机构
[1] Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[2] Inst Zhejiang Univ Quzhou, 78 Jinhua Blvd North, Quzhou 324000, Peoples R China
[3] Wuhan Inst Marine Elect Prop, Wuhan 430064, Peoples R China
[4] Wuhan Hydrogen Fuel Cell Engn Res Ctr, Wuhan 430064, Peoples R China
基金
中国国家自然科学基金;
关键词
Dehydrogenation; Liquid organic; Hydrogen carriers; PdO; REDUCED GRAPHENE OXIDE; N-ETHYLCARBAZOLE; STORAGE; NANOPARTICLES; PD; METHYLCYCLOHEXANE; PERFORMANCE; ACID;
D O I
10.1016/j.fuel.2020.117896
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The dehydrogenation of organics, e.g., dodecahydro-N-ethylcarbazole (12H-NECZ), at temperatures lower than 150 degrees C, plays a particularly important role in H-2 carriers by reducing energy consumption but remain a technical challenge. However, the dehydrogenation has currently been achieved using Pd-based catalysts at temperatures over 170 degrees C for 1.6 h. In this work, we reported a new strategy of using PdO as the active site, which can remarkably lower the dehydrogenation temperature compared with Pd-o state. The dehydrogenation of hydrogen-rich liquid organic hydrogen carriers (HR-LOHCs) catalyzed by 10 wt% PdO/AC showed a 95.8% yield of total dehydrogenated liquid organic hydrogen carriers (LOHCs) at only 100 degrees C for 60 h, and, as a comparison, 60.9% yield of LOHCs were obtained over 10 wt% Pd/AC at the same reaction conditions for 96 h. Notably, an almost complete yield of LOHCs (95.3%) was achieved at 140 degrees C for 8 h using PdO/AC.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Catalytic Biomass Upgrading Exploiting Liquid Organic Hydrogen Carriers (LOHCs)
    Ferlin, Francesco
    Valentini, Federica
    Marrocchi, Assunta
    Vaccaro, Luigi
    ACS Sustainable Chemistry and Engineering, 2021, 9 (29): : 9604 - 9624
  • [32] Catalytic Biomass Upgrading Exploiting Liquid Organic Hydrogen Carriers (LOHCs)
    Ferlin, Francesco
    Valentini, Federica
    Marrocchi, Assunta
    Vaccaro, Luigi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (29): : 9604 - 9624
  • [33] Hydrogen Storage and Transportation Technologies to Enable the Hydrogen Economy: Liquid Organic Hydrogen Carriers Overview and perspectives on liquid organic hydrogen carriers technology
    Southall, Emma
    Lukashuk, Liliana
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 246 - 258
  • [34] Purity of hydrogen released from the Liquid Organic Hydrogen Carrier compound perhydro dibenzyltoluene by catalytic dehydrogenation
    Bulgarin, A.
    Jorschick, H.
    Preuster, P.
    Bosmann, A.
    Wasserscheid, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (01) : 712 - 720
  • [35] Analysis of Liquid Organic Hydrogen Carrier Systems Properties of liquid organic hydrogen carriers, operation conditions and catalytic materials employed
    Southall, Emma
    Lukashuk, Liliana
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 271 - 284
  • [36] CATALYTIC PHENOL OXIDATION BY HYDROGEN OXIDE ON THE ACTIVATED CARBON SURFACE
    VASILENKO, II
    SHEVEL, NM
    ZHURNAL FIZICHESKOI KHIMII, 1986, 60 (06): : 1524 - 1525
  • [37] Hydrogen storage using liquid organic carriers: Equilibrium simulation and dehydrogenation reactor design
    Heublein, Norbert
    Stelzner, Malte
    Sattelmayer, Thomas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 24902 - 24916
  • [38] Hydrogenation/Dehydrogenation Catalysts for Hydrogen Storage Systems Based on Liquid Organic Carriers (A Review)
    I. A. Makaryan
    I. V. Sedov
    Petroleum Chemistry, 2021, 61 : 977 - 988
  • [39] Hydrogenation/Dehydrogenation Catalysts for Hydrogen Storage Systems Based on Liquid Organic Carriers (A Review)
    Makaryan, I. A.
    Sedov, I., V
    PETROLEUM CHEMISTRY, 2021, 61 (09) : 977 - 988
  • [40] Hydrogen storage using liquid organic carriers: Equilibrium simulation and dehydrogenation reactor design
    Heublein, Norbert
    Stelzner, Malte
    Sattelmayer, Thomas
    Heublein, Norbert (heublein@td.mw.tum.de), 1600, Elsevier Ltd (45): : 24902 - 24916