A DYNAMIC PROGRAMMING APPROACH TO THE PARISI FUNCTIONAL

被引:37
|
作者
Jagannath, Aukosh [1 ]
Tobasco, Ian [1 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Parisi formula; Sherrington-Kirkpatrick model; dynamic programming; FORMULA;
D O I
10.1090/proc/12968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
G. Parisi predicted an important variational formula for the thermodynamic limit of the intensive free energy for a class of mean field spin glasses. In this paper, we present an elementary approach to the study of the Parisi functional using stochastic dynamic programing and semi-linear PDE. We give a derivation of important properties of the Parisi PDE avoiding the use of Ruelle Probability Cascades and Cole-Hopf transformations. As an application, we give a simple proof of the strict convexity of the Parisi functional, which was recently proved by Auffinger and Chen.
引用
收藏
页码:3135 / 3150
页数:16
相关论文
共 50 条
  • [41] On constraint sampling in the linear programming approach to approximate dynamic programming
    de Farias, DP
    Van Roy, B
    MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (03) : 462 - 478
  • [42] Solving quadratic programming problem via dynamic programming approach
    Saber, Naghada
    Sulaiman, Nejmaddin
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 473 - 478
  • [43] AN INTERACTIVE DYNAMIC-PROGRAMMING APPROACH TO MULTICRITERIA DISCRETE PROGRAMMING
    VILLARREAL, B
    KARWAN, MH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 81 (02) : 524 - 544
  • [45] An Approximate Dynamic Programming Approach to the Dynamic Traveling Repairperson Problem
    Shin, Hyung Sik
    Lall, Sanjay
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2286 - 2291
  • [46] An approximate dynamic programming approach to solving dynamic oligopoly models
    Farias, Vivek
    Saure, Denis
    Weintraub, Gabriel Y.
    RAND JOURNAL OF ECONOMICS, 2012, 43 (02): : 253 - 282
  • [47] On solvability of functional equations and system of functional equations arising in dynamic programming
    Liu, Z
    Agarwal, RP
    Kang, SM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (01) : 111 - 130
  • [48] A multi-parametric programming approach for constrained dynamic programming problems
    Faisca, Nuno P.
    Kouramas, Konstantinos I.
    Saraiva, Pedro M.
    Rustem, Berc
    Pistikopoulos, Efstratios N.
    OPTIMIZATION LETTERS, 2008, 2 (02) : 267 - 280
  • [49] MULTICRITERIA INTEGER PROGRAMMING - A (HYBRID) DYNAMIC-PROGRAMMING RECURSIVE APPROACH
    VILLARREAL, B
    KARWAN, MH
    MATHEMATICAL PROGRAMMING, 1981, 21 (02) : 204 - 223
  • [50] State Aggregation based Linear Programming approach to Approximate Dynamic Programming
    Darbha, S.
    Krishnamoorthy, K.
    Pachter, M.
    Chandler, P.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 935 - 941