Pressureless gas equations with viscosity and nonlinear diffusion

被引:2
|
作者
Dermoune, A
Djehiche, B
机构
[1] USTL, UFR Math, Lab Probabil & Stat, F-59655 Villeneuve Dascq, France
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1016/S0764-4442(01)01914-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under some regularity conditions on P-0 and u(0), we derive a unique local strong solution of the following system of pressureless gas equations with viscosity: [GRAPHICS] P-t-->P-0, uP(t) --> u(0)P(0), weakly, as t --> 0(+), by constructing a nonlinear diffusion process as solution to the following SDE: [GRAPHICS] We show then that Pt is the probability density of X-t while the velocity field admits the Following stochastic representation: u(t,X) = E [u(0)(X-0) \ X-t = x]. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:745 / 750
页数:6
相关论文
共 50 条
  • [41] Degenerate Nonlinear Diffusion Equations Introduction
    Favini, Angelo
    Marinoschi, Gabriela
    DEGENERATE NONLINEAR DIFFUSION EQUATIONS, 2012, 2049 : IX - XXI
  • [42] TRAVELING FRONTS IN NONLINEAR DIFFUSION EQUATIONS
    HADELER, KP
    ROTHE, F
    JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 2 (03) : 251 - 263
  • [43] Global existence for nonlinear diffusion equations
    Anderson, JR
    Deng, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (02) : 479 - 501
  • [44] SIMULATION OF NONLINEAR REACTION DIFFUSION EQUATIONS
    STETSON, RF
    MCGUIRE, JB
    HOGAN, WA
    BULLETIN OF MATHEMATICAL BIOLOGY, 1977, 39 (03) : 391 - 396
  • [45] Large viscosity solutions for some fully nonlinear equations
    S. Alarcón
    A. Quaas
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1453 - 1472
  • [46] THE REGULARITY OF VISCOSITY SOLUTIONS FOR A CLASS OF FULLY NONLINEAR EQUATIONS
    DONG, GC
    BIAN, BJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1991, 34 (12): : 1448 - 1457
  • [47] Singular viscosity solutions to fully nonlinear elliptic equations
    Nadirashvili, Nikolai
    Vladut, Serge
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (02): : 107 - 113
  • [48] On the viscosity approach to a class of fully nonlinear elliptic equations
    Do, Hoang-Son
    Nguyen, Quang Dieu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [49] Viscosity solutions of nonlinear integro-differential equations
    Alvarez, O.
    Tourin, A.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1996, 13 (03): : 293 - 317
  • [50] Viscosity solutions of nonlinear integro-differential equations
    Alvarez, O
    Tourin, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03): : 293 - 317