Perturbative invariants of 3-manifolds with the first Betti number 1

被引:5
|
作者
Ohtsuki, Tomotada [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
关键词
MELVIN-MORTON EXPANSION; FINITE-TYPE INVARIANTS; CASSON;
D O I
10.2140/gt.2010.14.1993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that perturbative invariants of rational homology 3-spheres can be constructed by using arithmetic perturbative expansion of quantum invariants of them. However, we could not make arithmetic perturbative expansion of quantum invariants for 3-manifolds with positive Betti numbers by the same method. In this paper, we explain how to make arithmetic perturbative expansion of quantum SO(3) invariants of 3-manifolds with the first Betti number 1. Further, motivated by this expansion, we construct perturbative invariants of such 3-manifolds. We show some properties of the perturbative invariants, which imply that their coefficients are independent invariants.
引用
收藏
页码:1993 / 2045
页数:53
相关论文
共 50 条
  • [21] Transfinite Milnor invariants for 3-manifolds
    Cha, Jae Choon
    Orr, Kent E.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (08) : 2971 - 3046
  • [22] ON LORENTZIAN MANIFOLDS WITH HIGHEST FIRST BETTI NUMBER
    Schliebner, Daniel
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (04) : 1423 - 1436
  • [23] Bloch invariants of hyperbolic 3-manifolds
    Neumann, WD
    Yang, J
    DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) : 29 - 59
  • [24] Quantum invariants of random 3-manifolds
    Dunfield, Nathan M.
    Wong, Helen
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (04): : 2191 - 2205
  • [25] Congruence and quantum invariants of 3-manifolds
    Gilmer, Patrick M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1767 - 1790
  • [26] Homology surgery and invariants of 3-manifolds
    Garoufalidis, Stavros
    Levine, Jerome
    GEOMETRY & TOPOLOGY, 2001, 5 : 551 - 578
  • [27] On calculation of the Witten invariants of 3-manifolds
    Rafikov, E
    Repovs, D
    Spaggiari, F
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 75 : 385 - 398
  • [28] Generalized Kuperberg invariants of 3-manifolds
    Kashaev, Rinat
    Virelizier, Alexis
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (05): : 2575 - 2624
  • [29] Finite type invariants of 3-manifolds
    Cochran, TD
    Melvin, P
    INVENTIONES MATHEMATICAE, 2000, 140 (01) : 45 - 100
  • [30] Computing arithmetic invariants of 3-manifolds
    Coulson, D
    Goodman, OA
    Hodgson, CD
    Neumann, WD
    EXPERIMENTAL MATHEMATICS, 2000, 9 (01) : 127 - 152