Optimal Spline Approximation via l0-Minimization

被引:12
|
作者
Brandt, Christopher [1 ,2 ]
Seidel, Hans-Peter [2 ]
Hildebrandt, Klaus [1 ,2 ]
机构
[1] Delft Univ Technol, NL-2600 AA Delft, Netherlands
[2] Max Planck Inst Informat, Saarbrucken, Germany
关键词
B-SPLINE; CURVE; INTERPOLATION; SEGMENTATION;
D O I
10.1111/cgf.12589
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Splines are part of the standard toolbox for the approximation of functions and curves in R-d. Still, the problem of finding the spline that best approximates an input function or curve is ill-posed, since in general this yields a "spline" with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be formulated as an l(0)-regularized quadratic problem. This gives us a notion of optimal approximating splines that depend on one parameter, which weights the approximation error against the number of segments. We detail this concept for different types of splines including B-splines and composite Bezier curves. Based on the latest development in the field of sparse approximation, we devise a solver for the resulting minimization problems and show applications to spline approximation of planar and space curves and to spline conversion of motion capture data.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 50 条
  • [31] A new piecewise quadratic approximation approach for L0 norm minimization problem
    Qian Li
    Yanqin Bai
    Changjun Yu
    Ya-xiang Yuan
    Science China Mathematics, 2019, 62 : 185 - 204
  • [32] OPTIMAL CHOICE OF KNOTS FOR SPLINE APPROXIMATION OF FUNCTIONS
    LIGUN, AA
    SHUMEIKO, AA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (06): : 18 - 21
  • [33] H∞ optimal approximation for causal spline interpolation
    Nagahara, M.
    Yamamoto, Y.
    SIGNAL PROCESSING, 2011, 91 (02) : 176 - 184
  • [34] One-bit compressive sampling via l0 minimization
    Shen, Lixin
    Suter, Bruce W.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016,
  • [35] A Novel Edit Propagation Algorithm via L0 Gradient Minimization
    Guo, Zhenyuan
    Wang, Haoqian
    Li, Kai
    Zhang, Yongbing
    Wang, Xingzheng
    Dai, Qionghai
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT I, 2015, 9314 : 402 - 410
  • [36] On positive and copositive polynomial and spline approximation in L(p)[-1,1],0<p<infinity
    Hu, YK
    Kopotun, KA
    Yu, XM
    JOURNAL OF APPROXIMATION THEORY, 1996, 86 (03) : 320 - 334
  • [37] Detecting straight sections and optimal arc spline approximation
    Integration von Strecken in die Kreisbogensplinepassung mit optimaler Segmentzahl
    Maier, G. (gmaier@forwiss.uni-passau.de), 1600, Walter de Gruyter GmbH (80):
  • [38] Detecting Straight Sections and Optimal Arc Spline Approximation
    Maier, Georg
    Schindler, Andreas
    Janda, Florian
    Brummer, Stephan
    TM-TECHNISCHES MESSEN, 2013, 80 (10) : 329 - 334
  • [39] On optimal order of approximation from bivariate spline spaces
    Hong, D
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 1998, : 219 - 225
  • [40] Image Reconstruction via L0 Gradient and L1 Wavelet Coefficients Minimization
    Wang, Zexian
    Du, Huiqian
    Liu, Yilin
    Mei, Wenbo
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,