2D Thin Sheet Heterostructures of MoS2 on MoSe2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Range

被引:58
|
作者
Sharma, Mamta Devi [1 ]
Mahala, Chavi [1 ]
Basu, Mrinmoyee [1 ]
机构
[1] BITS Pilani, Dept Chem, Pilani Campus, Pilani 333031, Rajasthan, India
关键词
WATER; NANOSHEETS; CATALYST; OPTOELECTRONICS; FILMS; EDGES; C3N4;
D O I
10.1021/acs.inorgchem.9b03445
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Two-dimensional layered transition metal dichalcogenides, MoSe(2 )and MoS2, have drawn potential attention in the field of water splitting. Coupling of MoS2 and MoSe2 provides a sustainable route to improve the electrocatalytic activity for the hydrogen evolution reaction (HER). Here, the heterostructures of thin sheets (ts) of MoSe2 and MoS2 are combined to develop the MoSe2-ts@MoS2-ts heterostructure via multiple-step methodology. First, thin sheets of MoSe2 are synthesized following the stepwise hydrothermal method. After the successful synthesis of MoSe2-ts, MoS2-ts is synthesized on it to develop the heterostructure: MoSe2-ts@MoS2-ts. By tuning the amount of MoS2-ts and MoSe2-ts in the heterostructure separately, the optimum condition is obtained for HER. The unique heterostructure is efficient for HER under wide pH conditions like 1 M KOH, pH-7 phosphate buffer, 3.5% saline water, and finally 0.5 M H2SO4. MoSe2-ts@MoS2-ts can generate 10 mA/cm(2) current density under the application of -0.186 V vs RHE with a low( )Tafel value of 71 mV/decade. The formation of the heterojunction plays an essential role in facilitating charge transportation. Furthermore, the heterostructure provides the more active sites for the adsorption of hydrogen to generate H-2. An excess amount of any of the bare counter parts in the heterostructure leads to a decrease in electrocatalytic efficiency because of the lowered heterojuction formation. MoSe2-ts@MoS2-ts has very high stability during the electrocatalytic reaction, which is determined from 1000 consecutive cycles and a 24 h prolonged scan. MoSe2-ts@MoS2-ts can generate 147 mu mol of H-2 in similar to 50 min of reaction time with 100% Faradaic efficiency.
引用
收藏
页码:4377 / 4388
页数:12
相关论文
共 50 条
  • [21] 3D-Printed Topological MoS2/MoSe2 Heterostructures for Macroscale Superlubricity
    Zhao, Yu
    Mei, Hui
    Chang, Peng
    Yang, Yubo
    Huang, Weifeng
    Liu, Ying
    Cheng, Laifei
    Zhang, Litong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34984 - 34995
  • [22] Highly efficient nanosized MoS2/MoP heterocatalyst for enhancing hydrogen evolution reaction over a wide pH range
    Zhu, Mingyuan
    Yu, Lijun
    Sha, Simiao
    Ge, Riyue
    Cheng, Chi
    Dai, Liming
    Li, Sean
    Liu, Bin
    Qu, Zhixue
    Li, Wenxian
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [23] Interlayer excitonic states in MoSe2/MoS2 van derWaals heterostructures
    Arora, Ankit
    Nayak, Pramoda K.
    Bhattacharyya, Swastibrata
    Maity, Nikhilesh
    Singh, Abhishek K.
    Krishnan, Ananth
    Rao, M. S. Ramachandra
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [24] 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution
    Zheng, Binjie
    Chen, Yuanfu
    Qi, Fei
    Wang, Xinqiang
    Zhang, Wanli
    Li, Yanrong
    Li, Xuesong
    2D MATERIALS, 2017, 4 (02):
  • [25] Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction
    Tao, Li
    Duan, Xidong
    Wang, Chen
    Duan, Xiangfeng
    Wang, Shuangyin
    CHEMICAL COMMUNICATIONS, 2015, 51 (35) : 7470 - 7473
  • [26] Nanostructured Pt-doped 2D MoSe2: an efficient bifunctional electrocatalyst for both hydrogen evolution and oxygen reduction reactions
    Upadhyay, Shrish Nath
    Pakhira, Srimanta
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (37) : 22823 - 22844
  • [27] Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance
    Li, Songzhan
    Zang, Wenjie
    Liu, Ximeng
    Pennycook, Stephen J.
    Kou, Zongkui
    Yang, Chunhai
    Guan, Cao
    Wang, John
    CHEMICAL ENGINEERING JOURNAL, 2019, 359 : 1419 - 1426
  • [28] Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction
    Nikam, Revannath Dnyandeo
    Lu, Ang-Yu
    Sonawane, Poonarn Ashok
    Kumar, U. Rajesh
    Yadav, Kanchan
    Li, Lain-Jong
    Chen, Yit-Tsong
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) : 23328 - 23335
  • [29] Porous MoP2/MoS2 hierarchical nanowires for efficient hydrogen evolution reaction in full pH range
    Yu, Pei
    Luo, Fengting
    Chen, Shijian
    Journal of Alloys and Compounds, 2024, 985
  • [30] Facile fabrication of MoS2 and MoSe2 layered structures on Mo foil for the efficient photocatalytic dye degradation and electrocatalytic hydrogen evolution reaction
    Vikraman, Dhanasekaran
    Hussain, Sajjad
    Karuppasamy, K.
    Santhoshkumar, P.
    Alfantazi, Akram
    Jung, Jongwan
    Kim, Hyun-Seok
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 60