Equivalence theorem for Schur optimality of experimental designs

被引:8
|
作者
Harman, Radoslav [1 ]
机构
[1] Comenius Univ, Fac Math, Dept Appl Math & Stat, Bratislava 84248, Slovakia
关键词
optimal design; Schur optimality; E-k-optimality; D-optimality; equivalence theorem; trigonometric regression; Berman's model;
D O I
10.1016/j.jspi.2007.05.031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An experimental design is said to be Schur optimal, if it is optimal with respect to the class of all Schur isotonic criteria, which includes Kiefer's criteria of Phi(p)-optimality, distance optimality criteria and many others. In the paper we formulate an easily verifiable necessary and sufficient condition for Schur optimality in the set of all approximate designs of a linear regression experiment with uncorrelated errors. We also show that several common models admit a Schur optimal design, for example the trigonometric model, the first-degree model on the Euclidean ball, and the Berman's model. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1201 / 1209
页数:9
相关论文
共 50 条
  • [31] THE EQUIVALENCE THEOREM
    VELTMAN, H
    PHYSICAL REVIEW D, 1990, 41 (07): : 2294 - 2311
  • [32] ON THE EQUIVALENCE THEOREM
    TAKAHASHI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1955, 13 (01): : 105 - 106
  • [33] The converse of Schur's theorem
    Niroomand, Peyman
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 401 - 403
  • [34] A PROBABILISTIC PROOF OF A THEOREM OF SCHUR
    OLKIN, I
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01): : 50 - 51
  • [35] EQUIVALENCE THEOREM
    FIALKOW, AD
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (01): : 9 - &
  • [36] Polynomial Schur's Theorem
    Liu, Hong
    Pach, Peter Pal
    Sandor, Csaba
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1357 - 1384
  • [37] The converse of Schur’s theorem
    Peyman Niroomand
    Archiv der Mathematik, 2010, 94 : 401 - 403
  • [38] MORITA EQUIVALENCE FOR BLOCKS OF THE SCHUR ALGEBRAS
    ERDMANN, K
    MARTIN, S
    SCOPES, J
    JOURNAL OF ALGEBRA, 1994, 168 (01) : 340 - 347
  • [39] A simple proof of a theorem of Schur
    Mirzakhani, M
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (03): : 260 - 262
  • [40] The theorem of Schur in the Minkowski plane
    Lopez, Rafael
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 342 - 346