Semi-automated basal ganglia segmentation using large deformation diffeomorphic metric mapping

被引:0
|
作者
Khan, A
Aylward, E
Barta, P
Miller, M
Beg, MF
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ Washington, Dept Radiol & Psychiat, Seattle, WA 98195 USA
[3] Johns Hopkins Univ, Sch Med, Div Psychiat Neuroimaging, Dept Psychiat & Behav Sci, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the techniques required to produce accurate and reliable segmentations via grayscale image matching. Finding a large deformation, dense, non-rigid transformation from a template image to a target image allows us to map a template segmentation to the target image space, and therefore compute the target image segmentation and labeling. We outline a semi-automated procedure involving landmark and image intensity-based matching via the large deformation diffeomorphic mapping metric (LDDMM) algorithm. Our method is applied specifically to the segmentation of the caudate nucleus in pre- and post-symptomatic Huntington's Disease (HD) patients. Our accuracy is compared against gold-standard manual segmentations and various automated segmentation tools through the use of several error metrics.
引用
收藏
页码:238 / 245
页数:8
相关论文
共 50 条
  • [31] GEOMETRY-BASED FACIAL EXPRESSION RECOGNITION VIA LARGE DEFORMATION DIFFEOMORPHIC METRIC CURVE MAPPING
    Yang, Pucheng
    Yang, Huilin
    Wei, Yuanyuan
    Tang, Xiaoying
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1937 - 1941
  • [32] Semi-automated CT segmentation using optical flow and Fourier interpolation
    Huang, T
    Zhang, G
    Guerrero, T
    Starkschall, G
    Lin, K
    Forster, K
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (02): : S528 - S529
  • [33] Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping
    Anders, Niels S.
    Seijmonsbergen, Arie C.
    Bouten, Willem
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) : 2976 - 2985
  • [34] Semi-automated pulmonary nodule interval segmentation using the NLST data
    Balagurunathan, Yoganand
    Beers, Andrew
    Kalpathy-Cramer, Jayashree
    McNitt-Gray, Michael
    Hadjiiski, Lubomir
    Zhao, Bensheng
    Zhu, Jiangguo
    Yang, Hao
    Yip, Stephen S. F.
    Aerts, Hugo J. W. L.
    Napel, Sandy
    Cherezov, Dmitrii
    Cha, Kenny
    Chan, Heang-Ping
    Flores, Carlos
    Garcia, Alberto
    Gillies, Robert
    Goldgof, Dmitry
    MEDICAL PHYSICS, 2018, 45 (03) : 1093 - 1107
  • [35] Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases
    Sakamoto, Ryo
    Yakami, Masahiro
    Fujimoto, Koji
    Nakagomi, Keita
    Kubo, Takeshi
    Emoto, Yutaka
    Akasaka, Thai
    Aoyama, Gakuto
    Yamamoto, Hiroyuki
    Miller, Michael I.
    Mori, Susumu
    Togashi, Kaori
    RADIOLOGY, 2017, 285 (02) : 629 - 639
  • [36] SEMI-AUTOMATED TOPOGRAPHIC MAPPING OF FRACTURE SURFACES
    BRYANT, JD
    WILSDORF, HGF
    JOURNAL OF METALS, 1985, 37 (11): : A70 - A71
  • [37] Semi-automated assessment and workload expectation mapping
    Lewis, Melinda
    Mahony, Mary Jane
    Poulos, Ann
    WHO'S LEARNING? WHOSE TECHNOLOGY?, PROCEEDINGS, VOLS 1 AND 2, 2006, : 981 - 981
  • [38] A Semi-Automated Approach for Anatomical Ontology Mapping
    Petrov, Peter
    Krachunov, Milko
    Vassilev, Dimitar
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2013, 10 (02):
  • [39] Using data-driven algorithms for semi-automated geomorphological mapping
    Giaccone, Elisa
    Oriani, Fabio
    Tonini, Marj
    Lambiel, Christophe
    Mariethoz, Gregoire
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (08) : 2115 - 2131
  • [40] Using data-driven algorithms for semi-automated geomorphological mapping
    Elisa Giaccone
    Fabio Oriani
    Marj Tonini
    Christophe Lambiel
    Grégoire Mariéthoz
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2115 - 2131