Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells

被引:45
|
作者
Wang, Xin [1 ]
Feng, Yujie [1 ]
Liu, Jia [1 ]
Shi, Xinxin [1 ]
Lee, He [1 ]
Li, Nan [1 ]
Ren, Nanqi [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
来源
BIOSENSORS & BIOELECTRONICS | 2010年 / 26卷 / 02期
基金
美国国家科学基金会;
关键词
Microbial fuel cells (MFCs); Nafion; PTFE; Mixed binder; Air-cathode; ELECTRON-TRANSFER; CARBON; EFFICIENCY; CATALYST; ANODES; PTFE;
D O I
10.1016/j.bios.2010.06.026
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nafion, poly(tetrafluoroethylene) (PTFE) and polymers made of Nafion-PTFE mixture (Nafion and PTFE ratios of 1:2 and 2:1) were examined as catalyst binders in air-cathode microbial fuel cells (MFCs). MFC tests showed that the maximum power density (from 549 to 1060 mW/m(2)) increased with the increase of Nafion percentage in binders (from 0% to 100%). Multi-cycle tests (25 cycles) showed that the maximum voltages decreased by 4-6% with simultaneous increase in Coulombic efficiency in all MFCs using various binders (from 20% to 29% with Nafion binder; from 17% to 26% with other binders), indicating that adjustable Nafion/PTFE mixed polymers were applicable in MFCs as catalyst binders when considering both cost and performance of cathodes. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:946 / 948
页数:3
相关论文
共 50 条
  • [21] Bioelectrogeneic performance of air-cathode microbial fuel cells with diesel contaminants
    Zafar, Zargona
    Naz, Sarwat
    Malik, Noshaba Hassan
    Ahmed, Fayyaz
    Ali, Naeem
    FUEL, 2024, 355
  • [22] Accelerated tests for evaluating the air-cathode aging in microbial fuel cells
    Gao, Ningshengjie
    Fan, Yanzhen
    Wang, Luguang
    Long, Fei
    Deng, Dezhong
    Liu, Hong
    BIORESOURCE TECHNOLOGY, 2020, 297
  • [23] Electricity generation and wastewater treatment using an Air-Cathode Single Chamber Microbial Fuel Cell
    Cui Kangping
    Wang Ye
    Sun Shiqun
    2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [24] Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
    Logan, Bruce
    Cheng, Shaoan
    Watson, Valerie
    Estadt, Garett
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) : 3341 - 3346
  • [25] A BRIEF REVIEW ON RECENT ADVANCES IN AIR-CATHODE MICROBIAL FUEL CELLS
    Chatterjee, Pritha
    Ghangrekar, Makarand Madhao
    Leech, Donal
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2018, 17 (07): : 1531 - 1544
  • [26] Development of novel polyethylene air-cathode material for microbial fuel cells
    Gao, Ningshengjie
    Qu, Botong
    Xing, Zhenyu
    Ji, Xiulei
    Zhang, Eugene
    Liu, Hong
    ENERGY, 2018, 155 : 763 - 771
  • [27] Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells
    Cheng, Shaoan
    Wu, Jiancheng
    BIOELECTROCHEMISTRY, 2013, 92 : 22 - 26
  • [28] PTFE-based hydrophobic layers influence bioelectrical performance of sediment microbial fuel cells with floating air-cathode
    Noor, Nurfarhana Nabila Mohd
    Misali, Rashida
    Kim, Kyunghoi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 469 - 475
  • [29] Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells
    Yang, Fei
    Ren, Lijiao
    Pu, Yuepu
    Logan, Bruce E.
    BIORESOURCE TECHNOLOGY, 2013, 128 : 784 - 787
  • [30] Investigating the effect of membrane layers on the cathode potential of air-cathode microbial fuel cells
    Mohamed, Hend Omar
    Abdelkareem, Mohammad Ali
    Park, Mira
    Lee, Jinpyo
    Kim, Taewoo
    Ojha, Gunendra Prasad
    Pant, Bishweshwar
    Park, Soo-Jin
    Kim, HakYong
    Barakat, Nasser A. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) : 24308 - 24318