共 50 条
The generalized connectivity of complete bipartite graphs
被引:0
|作者:
Li, Shasha
[1
]
Li, Wei
Li, Xueliang
机构:
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
来源:
关键词:
k-connectivity;
complete bipartite graph;
edge-disjoint spanning trees;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a nontrivial connected graph of order n, and k an integer with 2 <= k <= n. For a set S of k vertices of G, let kappa(S) denote the maximum number l of edge-disjoint trees T-1, T-2,...,T-l in G such that V(T-i) boolean AND V(T-j) = S for every pair i, j of distinct integers with 1 <= i, j <= l. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by kappa(k)(G), of G is defined by kappa(k)(G) =min{kappa(S)}, where the minimum is taken over all k-subsets S of V(G). Thus kappa(2)(G) = kappa(G), where kappa(G) is the connectivity of G. Moreover, kappa(n)(G) is the maximum number of edge-disjoint spanning trees of G. This paper mainly focus on the k-connectivity of complete bipartite graphs K-a,K-b, where 1 <= a <= b. First, we obtain the number of edge-disjoint spanning trees of K-a,K-b, which is lfloor ab/a+b-1rfloor, and specifically give the lfloor ab/a+b-1rfloor edge-disjoint spanning trees. Then, based on this result, we get the k-connectivity of K-a,K-b for all 2 <= k <= a + b. Namely, if k > b - a + 2 and a - b + k is odd then kappa(k)(K-a,K-b) = a+b-k+1/2 + lfloor (a-b+k-1)(b-a+k-1)/4(k-1)rfloor, if k > b - a + 2 and a - b + k is even then kappa(k)(K-a,K-b) = a+b-k/2 + lfloor(a-b+k)(b-a+k)/4(k-1)rfloor, and if k <= b - a + 2 then kappa(k)(K-a,K-b) = a.
引用
收藏
页码:65 / 79
页数:15
相关论文