Next-generation frequency domain diffuse optical imaging systems using silicon photomultipliers

被引:15
|
作者
Kitsmiller, Vincent J. [1 ]
O'Sullivan, Thomas D. [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
关键词
Avalanche Photo Diode (APD) - Chemotherapy response - Coefficient of variation - Diffuse optical imaging - Diffuse optical spectroscopy - Functional information - Silicon photomultiplier - Tissue simulating phantoms;
D O I
10.1364/OL.44.000562
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Diffuse optical imaging of biological tissue is a well-established methodology used to measure functional information from intrinsic contrast due to hemoglobin, water, and lipid. This information is exploited in frequency domain diffuse optical spectroscopy (FD-DOS) systems, which have been used to investigate chemotherapy response, optical mammography, and brain imaging. FD-DOS depth sensitivity and dynamic range are typically constrained by photodetector sensitivity. Here we present FD-DOS utilizing a silicon photomuhiplier (SiPM) detector that has a higher signal-to-noise ratio (SNR) compared to an avalanche photodiode (APD), and thus enables extended source-detector (S/D) separations and increased depth penetration. We find the SiPM to have 10-30 dB greater SNR than a comparably sized APD while detecting 1.5-2 orders of magnitude lower light levels, down to similar to 4 pW at 50 MHz modulation. The SiPM and APD recover optical property values of tissue-simulating phantoms within 13% agreement and are stable with 1% coefficient of variation over one hour. Finally, the SiPM is used to accurately recover optical properties in a reflectance geometry at S/D separations up to 48 mm in phantoms mimicking human breast tissue. (C) 2019 Optical Society of America
引用
收藏
页码:562 / 565
页数:4
相关论文
共 50 条
  • [21] Next-generation turbine systems
    Layne, A.W.
    IEEE Power Engineering Review, 2001, 21 (04): : 18 - 23
  • [22] Next-generation television systems
    Yamaguchi, N
    Nakayama, H
    Minobe, T
    MITSUBISHI ELECTRIC ADVANCE, 1995, 71 : 22 - 24
  • [23] Optical design, performance and tolerancing of next-generation airborne imaging spectrometers
    Bender, Holly A.
    Mouroulis, Pantazis
    Green, Robert O.
    Wilson, Daniel W.
    IMAGING SPECTROMETRY XV, 2010, 7812
  • [24] Silicon Filaments in Silicon Oxide for Next-Generation Photovoltaics
    Cuony, Peter
    Alexander, Duncan T. L.
    Perez-Wurfl, Ivan
    Despeisse, Matthieu
    Bugnon, Gregory
    Boccard, Mathieu
    Soederstroem, Thomas
    Hessler-Wyser, Aicha
    Hebert, Cecile
    Ballif, Christophe
    ADVANCED MATERIALS, 2012, 24 (09) : 1182 - 1186
  • [25] Single-domain antibodies: Next-generation targeting vectors for molecular imaging
    Zarschler, Kristof
    Zscheppang, Katja
    Kapplusch, Franz
    Cordes, Nils
    Stephan, Holger
    NUCLEAR MEDICINE AND BIOLOGY, 2014, 41 (07) : 628 - 628
  • [26] Next-Generation Infrared Spectroscopic Imaging
    不详
    SPECTROSCOPY, 2015, 30 (01) : 32 - 35
  • [27] Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers
    Farina, Andrea
    Tagliabue, Susanna
    Di Sieno, Laura
    Martinenghi, Edoardo
    Durduran, Turgut
    Arridge, Simon
    Martelli, Fabrizio
    Torricelli, Alessandro
    Pifferi, Antonio
    Dalla Mora, Alberto
    APPLIED SCIENCES-BASEL, 2017, 7 (12):
  • [28] Optical Device Technology for Next-generation Computing Using Light
    Okada A.
    Hashimoto T.
    NTT Technical Review, 2022, 20 (08): : 42 - 46
  • [29] Perovskites for Next-Generation Optical Sources
    Quan, Li Na
    Rand, Barry P.
    Friend, Richard H.
    Mhaisalkar, Subodh Gautam
    Lee, Tae-Woo
    Sargent, Edward H.
    CHEMICAL REVIEWS, 2019, 119 (12) : 7444 - 7477
  • [30] Optical network of next-generation carrier
    Aoki, T
    Sakita, Y
    Takemoto, G
    NTT REVIEW, 2000, 12 (05): : 58 - 60