Values of a Class of Generalized Euler and Bernoulli Numbers

被引:0
|
作者
Yang, Jin-Hua [1 ]
Zhao, Feng-Zhen [1 ]
机构
[1] Dalian Univ Technol, Dalian 116024, Peoples R China
关键词
POLYNOMIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors discuss the values of a class of generalized Euler numbers and generalized Bernoulli numbers at rational points.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [21] Congruences for Bernoulli, Euler, and Stirling numbers
    Young, PT
    JOURNAL OF NUMBER THEORY, 1999, 78 (02) : 204 - 227
  • [22] DOUBLE SERIES FOR BERNOULLI AND EULER NUMBERS
    HIGGINS, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (OCT): : 722 - +
  • [23] On (i, q) Bernoulli and Euler numbers
    Cenkci, M.
    Kurt, V.
    Rim, S. H.
    Simsek, Y.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (07) : 706 - 711
  • [24] IDENTITIES FOR THE BERNOULLI AND EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Lee, B.
    Lee, S. H.
    Rim, S-H.
    ARS COMBINATORIA, 2012, 107 : 325 - 337
  • [25] SOME THEOREMS ON BERNOULLI AND EULER NUMBERS
    Hwang, K. -W.
    Dolgy, D. V.
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    ARS COMBINATORIA, 2013, 109 : 285 - 297
  • [26] Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers
    Onishi, Y.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (05) : 871 - 932
  • [27] Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers
    老大中
    赵珊珊
    老天夫
    Journal of Beijing Institute of Technology, 2015, 24 (03) : 298 - 304
  • [28] Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam, Bernoulli numbers and Euler numbers
    Lao, Da-Zhong
    Zhao, Shan-Shan
    Lao, Tian-Fu
    Journal of Beijing Institute of Technology (English Edition), 2015, 24 (03): : 298 - 304
  • [29] GENERALIZED EULER NUMBERS
    GROSSWALD, E
    MATHEMATISCHE ZEITSCHRIFT, 1974, 140 (02) : 173 - 177
  • [30] On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers
    Bayad, Abdelmejid
    Simsek, Yilmaz
    SYMMETRY-BASEL, 2022, 14 (04):