On the Laplacian integral (k - 1)-cyclic graphs

被引:0
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Laplacian spectrum; Laplacian integral graph; generalized theta-graph; EIGENVALUES; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if its Laplacian spectrum consists of integers. Let theta(n(1), n(2) ..., n(k)) be a generalized theta-graph (see Figure 1). Denote by g(k-1) the set of (k - 1)-cyclic graphs each of them contains some generalized theta-graph theta(n(1), n(2), ..., n(k)) as its induced subgraph. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1), from which we identify all the Laplacian integral graphs in the class g(k-1) (Theorem 3.2).
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [21] On integer matrices with integer eigenvalues and Laplacian integral graphs
    Barik, Sasmita
    Behera, Subhasish
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [22] On the inertia of weighted (k-1)-cyclic graphs
    Deng, Shibing
    Li, Shuchao
    Song, Feifei
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 285 - 299
  • [23] The c-cyclic graphs with maximum Laplacian spread
    Lin, Zhen
    Miao, Lianying
    ARS COMBINATORIA, 2020, 148 : 47 - 55
  • [24] On the Laplacian spectrum of k-symmetric graphs
    Moon, Sunyo
    Yoo, Hyungkee
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [25] THE (SIGNLESS) LAPLACIAN SPECTRAL RADII OF C-CYCLIC GRAPHS WITH N VERTICES AND K PENDANT VERTICES
    Liu, Muhuo
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 942 - 952
  • [26] Signless Laplacian spectrum of power graphs of finite cyclic groups
    Banerjee, Subarsha
    Adhikari, Avishek
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 356 - 366
  • [27] On Laplacian spectrum of power graphs of finite cyclic and dihedral groups
    Chattopadhyay, Sriparna
    Panigrahi, Pratima
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1345 - 1355
  • [28] ON THE BOUNDS OF LAPLACIAN EIGENVALUES OF k-CONNECTED GRAPHS
    Chen, Xiaodan
    Hou, Yaoping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (03) : 701 - 712
  • [29] On the bounds of Laplacian eigenvalues of k-connected graphs
    Xiaodan Chen
    Yaoping Hou
    Czechoslovak Mathematical Journal, 2015, 65 : 701 - 712
  • [30] k-cyclic Orientations of Graphs
    Kobayashi, Yasuaki
    Miyamoto, Yuichiro
    Tamaki, Hisao
    ALGORITHMS AND COMPUTATION, PT 2, 2010, 6507 : 73 - +