The variation in soil water retention of alpine shrub meadow under different degrees of degradation on northeastern Qinghai-Tibetan plateau

被引:43
|
作者
Dai, Licong [1 ,3 ]
Guo, Xiaowei [1 ]
Ke, Xun [1 ,3 ]
Du, Yangong [1 ]
Mang, Fawei [1 ,2 ]
Cao, Guangmin [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Restorat Ecol Cold Reg, Xining 810001, Qinghai, Peoples R China
[2] Luoyang Normal Univ, Coll Life Sci, Luoyang 471934, Henan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Qinghai-Tibet plateau; Alpine shrub meadow; Soil water retention; Soil properties; Redundancy analysis; ORGANIC-MATTER; LAND-USE; HYDRAULIC CONDUCTIVITY; INFILTRATION; GRASSLAND; CARBON; REGION; VARIABILITY; PATTERNS; TILLAGE;
D O I
10.1007/s11104-020-04522-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background and aims In recent decades, an increasing proportion of alpine shrub meadow has become severely degraded owing to the combined effects of global climate warming and rodent infestation, with significant impacts on soil water retention. The present paper investigates the patterns and controlling factors of soil water retention of alpine shrub meadow under different degrees of degradation, to help inform decisions on the management of degraded alpine shrub meadow. Methods Four degradation stages were defined: non-degradation (ND); light degradation (LD); moderate degradation (MD) and higher degradation (HD). Pearson correlation and redundancy analysis were used to examine the relationships between soil physical properties and soil hydraulic properties. Results Sand content increased while clay content decreased with increasing degree of degradation. In HD treatment, the available nitrogen and soil bulk density of surface soil layer was significantly lower than that in the other three stages, whereas the soil organic matter content and soil total porosity of surface soil layer was increased significantly, the soil compaction of 0-10 cm soil depth in HD was reduced significantly. The soil water retention of 0-60 cm soil depth first decreased and then increased with increasing degradation, with the maximum values occurring in HD, and the soil organic matter has an overwhelming effect on soil water retention than soil texture. Conclusions As the degree of degradation increased, the surface soil structure deteriorated, and available nitrogen reduced while soil organic matter increased sharply in higher degradation, which leads to the highest soil water retention in higher degradation. Our results suggested that the soil water retention in degraded alpine grassland was largely determined by soil organic matter, and the soil organic matter parameters should be incorporated in hydrological models of degraded alpine ecosystem.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 50 条
  • [31] Strong seasonal connectivity between shallow groundwater and soil frost in a humid alpine meadow, northeastern Qinghai-Tibetan Plateau
    Zhang, Fawei
    Li, Hongqin
    Li, Yikang
    Guo, Xiaowei
    Dai, Licong
    Lin, Li
    Cao, Guangmin
    Li, Yingnian
    Zhou, Huakun
    JOURNAL OF HYDROLOGY, 2019, 574 : 926 - 935
  • [32] Interannual and seasonal variability in evapotranspiration of alpine meadow in the Qinghai-Tibetan Plateau
    Zhang, Hong
    Dou, Ruiyin
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (18)
  • [33] Winter plant phenology in the alpine meadow on the eastern Qinghai-Tibetan Plateau
    Mo, Li
    Luo, Peng
    Mou, Chengxiang
    Yang, Hao
    Wang, Jun
    Wang, Zhiyuan
    Li, Yuejiao
    Luo, Chuan
    Li, Ting
    Zuo, Dandan
    ANNALS OF BOTANY, 2018, 122 (06) : 1033 - 1045
  • [34] Effects of Climatic Variability on Soil Water Content in an Alpine Kobresia Meadow, Northern Qinghai-Tibetan Plateau, China
    Si, Mengke
    Guo, Xiaowei
    Lan, Yuting
    Fan, Bo
    Cao, Guangmin
    WATER, 2022, 14 (17)
  • [35] Interannual and seasonal variability in evapotranspiration of alpine meadow in the Qinghai-Tibetan Plateau
    Hong Zhang
    Ruiyin Dou
    Arabian Journal of Geosciences, 2020, 13
  • [36] Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China
    Xu, ManHou
    Peng, Fei
    You, QuanGang
    Guo, Jian
    Tian, XiaFei
    Liu, Min
    Xue, Xian
    JOURNAL OF ARID LAND, 2015, 7 (02) : 189 - 204
  • [37] Effects of experimental warming on soil enzyme activities in an alpine swamp meadow on the Qinghai-Tibetan Plateau
    Bai, Wei
    Wang, Genxu
    Shang, Guanglie
    Xu, Lei
    Wang, Zilong
    PEDOBIOLOGIA, 2023, 101
  • [38] Change in soil microbial biomass and regulating factors in an alpine meadow site on the Qinghai-Tibetan Plateau
    Wu, Jianguo
    SOIL SCIENCE AND PLANT NUTRITION, 2020, 66 (01) : 177 - 194
  • [39] Patchy degradation-induced changes in soil aggregates and organic carbon in an alpine swamp meadow on the Qinghai-Tibetan Plateau
    Hu, Meng-ai
    Yao, Zeying
    Shi, Lina
    Wu, Qiong
    Tang, Shiming
    Shao, Xinqing
    LAND DEGRADATION & DEVELOPMENT, 2024, 35 (16) : 4713 - 4725
  • [40] Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau
    Li Wen
    Wang Jinlan
    Zhang Xiaojiao
    Shi Shangli
    Cao Wenxia
    ECOLOGICAL ENGINEERING, 2018, 111 : 134 - 142