Research on Turning 2.25Cr-1Mo-0.25v Force Density Function and Stress

被引:0
|
作者
Li Zhe [1 ]
Li Yongfu [1 ]
Li Long [1 ]
Zheng Minli [1 ]
Zhai Quanpeng [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150080, Peoples R China
关键词
turning; force density function; stress field;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article in view of the high strength steel 2.2SCr-1lMo-0.25V difficult processing materials in the process of turning cutting force is bigger, the blade is easy to damage, solve the problem of the cutting tool rake face stress distribution and temperature distribution as the as the main research contents, according to the experimental results setting up the cutting force empirical formula and tool-chip contact area of empirical formula; the tool rake face stress distribution and temperature distribution as the as the main research content, cutting high strength steel 2.2SCr-1Mo-0.25V cutting force experiment, combined with the cutting force and tool-chip contact area empirical formula established H groove cemented carbide cutting tool rake face of mechanical heating density function; the force density function as boundary conditions for the tool stress field simulation; obtain H-groove carbide tool rake face force distribution is characterized by the main cutting edge tip and the stress value is relatively large, the stress distribution is relatively concentrated; for the turning blade stress field and temperature field of finite element analysis provides the boundary conditions during the process of turning, in order to further improve the tool breakage mechanism provides basic data and reference.
引用
收藏
页码:1425 / 1430
页数:6
相关论文
共 50 条
  • [21] Quantitative carbide analysis using the Rietveld method for 2.25Cr-1Mo-0.25V steel
    Zhang Yongtao
    Han Haibo
    Miao Lede
    Zhang Hanqian
    Li Jinfu
    MATERIALS CHARACTERIZATION, 2009, 60 (09) : 953 - 956
  • [22] 2.25Cr-1Mo-0.25V钢应力腐蚀裂纹扩展速率试验
    刘长海
    孙立勇
    高军
    东北林业大学学报, 2013, 41 (10) : 124 - 126
  • [23] 2.25Cr-1Mo-0.25V钢的焊缝回火脆化研究
    宋立平
    孙荣禄
    压力容器, 2012, 29 (06) : 24 - 28+62
  • [24] Effect of reheating processes on grain boundary heritance for 2.25Cr-1Mo-0.25V steel
    Wang, C. Y.
    Fu, R. D.
    Zhou, W. H.
    Zhang, W. H.
    Zheng, Y. Z.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 438 (1135-1138): : 1135 - 1138
  • [25] 2.25Cr-1Mo-0.25V钢焊缝阶冷脆化研究
    宋立平
    孙荣禄
    热加工工艺, 2014, 43 (05) : 31 - 33+37
  • [26] Microstructural evolution of 2.25Cr-1Mo-0.25V submerged-arc weld metal
    Schoenmaier, Hannah
    Grimm, Fred
    Krein, Ronny
    Kirchheimer, Katharina
    Schnitzer, Ronald
    WELDING IN THE WORLD, 2020, 64 (02) : 379 - 393
  • [27] 2.25Cr-1Mo-0.25V钢加氢反应器的研制
    梅丽华
    魏刚
    压力容器, 2003, (11) : 36 - 42
  • [28] 2.25Cr-1Mo-0.25V加氢模拟环锻件钢的冶炼
    薛永栋
    晋帅勇
    汪勇
    赵越
    郭彪
    贺强
    赵阳磊
    大型铸锻件, 2013, (02) : 48 - 50
  • [29] Microstructure and Charpy Impact Toughness of a 2.25Cr-1Mo-0.25V Steel Weld Metal
    Wu, Kefan
    Yan, Yingjie
    Cao, Rui
    Li, Xinyu
    Jiang, Yong
    Yang, Fei
    Jia, Xingwang
    Chen, Jianhong
    MATERIALS, 2020, 13 (13)
  • [30] Microstructural evolution of 2.25Cr-1Mo-0.25V submerged-arc weld metal
    Hannah Schönmaier
    Fred Grimm
    Ronny Krein
    Katharina Kirchheimer
    Ronald Schnitzer
    Welding in the World, 2020, 64 : 379 - 393