Medical image fusion with convolutional neural network in multiscale transform domain

被引:1
|
作者
Abas, Asan Ihsan [1 ]
Kocer, Hasan Erdinc [2 ]
Baykan, Nurdan Akhan [1 ]
机构
[1] Konya Tech Univ, Engn Fac, Dept Comp Engn, Konya, Turkey
[2] Selcuk Univ, Technol Fac, Dept Elect & Elect Engn, Konya, Turkey
关键词
Medical image fusion; convolutional neural networks; multiscale transform; DISCRETE WAVELET TRANSFORM; AVERAGING FUSION; PERFORMANCE;
D O I
10.3906/elk-2105-170
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal medical image fusion approaches have been commonly used to diagnose diseases and involve merging multiple images of different modes to achieve superior image quality and to reduce uncertainty and redundancy in order to increase the clinical applicability. In this paper, we proposed a new medical image fusion algorithm based on a convolutional neural network (CNN) to obtain a weight map for multiscale transform (curvelet/ non-subsampled shearlet transform) domains that enhance the textual and edge property. The aim of the method is achieving the best visualization and highest details in a single fused image without losing spectral and anatomical details. In the proposed method, firstly, non-subsampled shearlet transform (NSST) and curvelet transform (CvT) were used to decompose the source image into low-frequency and high-frequency coefficients. Secondly, the low-frequency and high-frequency coefficients were fused by the weight map generated by Siamese Convolutional Neural Network (SCNN), where the weight map get by a series of feature maps and fuses the pixel activity information from different sources. Finally, the fused image was reconstructed by inverse multi-scale transform (MST). For testing of proposed method, standard gray-scaled magnetic resonance (MR) images and colored positron emission tomography (PET) images taken from Brain Atlas Datasets were used. The proposed method can effectively preserve the detailed structure information and performs well in terms of both visual quality and objective assessment. The fusion experimental results were evaluated (according to quality metrics) with quantitative and qualitative criteria.
引用
收藏
页码:2780 / +
页数:17
相关论文
共 50 条
  • [41] Multilevel Features Convolutional Neural Network for Multifocus Image Fusion
    Yang, Yong
    Nie, Zhipeng
    Huang, Shuying
    Lin, Pan
    Wu, Jiahua
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (02) : 262 - 273
  • [42] Multifocus image fusion method based on a convolutional neural network
    Zhai, Hao
    Zhuang, Yi
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (02)
  • [43] Infrared and visible image fusion of convolutional neural network and NSST
    Huan K.
    Li X.
    Cao Y.
    Chen X.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (03):
  • [44] HCNNet: A Hybrid Convolutional Neural Network for Spatiotemporal Image Fusion
    Zhu, Zhuangshan
    Tao, Yuxiang
    Luo, Xiaobo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [45] Remote Sensing Image Fusion With Deep Convolutional Neural Network
    Shao, Zhenfeng
    Cai, Jiajun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) : 1656 - 1669
  • [46] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [47] Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform
    Yang, L.
    Guo, B. L.
    Ni, W.
    NEUROCOMPUTING, 2008, 72 (1-3) : 203 - 211
  • [48] Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain
    Li, Bo
    Peng, Hong
    Luo, Xiaohui
    Wang, Jun
    Song, Xiaoxiao
    Perez-Jimenez, Mario J.
    Riscos-Nunez, Agustin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (01)
  • [49] Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hyperspectral Image Classification
    Zhou, Hao
    Luo, Fulin
    Zhuang, Huiping
    Weng, Zhenyu
    Gong, Xiuwen
    Lin, Zhiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis
    Lv, Defeng
    Wang, Huawei
    Che, Changchang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2021, 73 (03) : 516 - 522