Eigenstates of photonic crystal structures visualized in real space and in k-space

被引:0
|
作者
Engeten, R. J. P. [1 ]
Sugimoto, Y. [2 ,3 ]
Gersen, H. [4 ]
Ikeda, N. [2 ,3 ]
Asakawa, K. [3 ]
Kuipers, L. [1 ]
机构
[1] FOM Inst AMOLF, Ctr Nanophoton, Kruislaan 407, NL-1098 SJ Amsterdam, Netherlands
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba 3058561, Japan
[3] Univ Tsukuba, TARA Ctr, Tsukuba, Ibaraki 3058577, Japan
[4] Univ Bristol, Dept Phys, Nanophys & Soft Matter Grp, Bristol BS8 1TL, Avon, England
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic crystal structures allow an unprecedented control of light on length scales equivalent to the wavelength. The intricate interaction of light and the periodic lattice can lead to phenomena like localization, negative refraction and slow light. In order to understand the optical behaviour of such novel structures, an investigation of the underlying photonic eigenstates is crucial, since the propagation of light through them is governed by their photonic eigenstates and the coupling between these states. Here we investigate the propagation of light pulses through a complex photonic crystal device in real-time. Analysis of the photonic eigenstates in k-space allows different states to be identified. By tracking the evolution of the eigenstates in both k-space and time, we uncover the dynamics of the eigenstates and their mutual coupling directly on femtosecond time-scales.
引用
收藏
页码:141 / +
页数:2
相关论文
共 50 条
  • [21] DIFFERENTIATION OF K-SPACE MAPPINGS
    SOBOLEV, VI
    SHCHERBIN, VM
    DOKLADY AKADEMII NAUK SSSR, 1975, 225 (05): : 1020 - 1022
  • [22] Lasing high in k-space
    Jérôme Faist
    Nature Photonics, 2009, 3 : 11 - 12
  • [23] REAL-SPACE AND -]K-SPACE ELECTRON PAIRING IN BAPB1-XBIXO3
    RICE, TM
    SNEDDON, L
    PHYSICAL REVIEW LETTERS, 1981, 47 (09) : 689 - 692
  • [24] STRATIFIABLE KR-SPACE WHICH IS NOT K-SPACE
    BORGES, CR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A542 - A542
  • [25] OPTIMAL DENSITY OF STATES IN THE FOURIER SPACE (K-SPACE)
    SCHULZ, M
    HANDRICH, K
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1991, 164 (01): : 141 - 146
  • [26] Augmented-space recursion in the k-space representation
    J Phys Condens Matter, 45 (8569):
  • [27] A STRATIFIABLE KR-SPACE WHICH IS NOT A K-SPACE
    BORGES, CR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) : 308 - 310
  • [28] LINEWIDTH OF POLARITON IN K-SPACE - ANHARMONICITY AND DIELECTRIC PERMEABILITY OF GAP CRYSTAL
    LESKOVA, PA
    MAVRIN, BN
    STERIN, KE
    FIZIKA TVERDOGO TELA, 1976, 18 (12): : 3653 - 3660
  • [29] A CLASS OF STRUCTURES WITH OPERATORS AND A NEW CHARACTERISTIC OF POSITIVE PORTION OF K-SPACE
    RABINOVI.MG
    DOKLADY AKADEMII NAUK SSSR, 1967, 174 (04): : 751 - &
  • [30] Algebraic K-Space Identification 2D technique for the automatic extraction of complex k-space of 2D structures in presence of uncertainty
    Brion, Thomas
    Li, Xuefeng
    Fossat, Pascal
    Ichchou, Mohamed
    Bareille, Olivier
    Zine, Abdel-Malek
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 233