Machine learning with nonlinear state space models

被引:1
|
作者
Schuessler, Max [1 ]
机构
[1] Univ Siegen, Inst Mech & Control Engn Mechatron, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
关键词
system identification; neural networks; machine learning;
D O I
10.1515/auto-2022-0089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this dissertation, a novel class of model structures and associated training algorithms for building data-driven nonlinear state space models is developed. The new identification procedure with the resulting model is called local model state space network (LMSSN). Furthermore, recurrent neural networks (RNNs) and their similarities to nonlinear state space models are elaborated on. The overall outstanding performance of the LMSSN is demonstrated on various applications.
引用
收藏
页码:1027 / 1028
页数:2
相关论文
共 50 条
  • [41] Variational learning for switching state-space models
    Ghahramani, Z
    Hinton, GE
    NEURAL COMPUTATION, 2000, 12 (04) : 831 - 864
  • [42] Learning Stable Gaussian Process State Space Models
    Umlauft, Jonas
    Lederer, Armin
    Hirche, Sandra
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1499 - 1504
  • [43] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750
  • [44] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [45] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [46] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [47] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [48] Alternative EM Algorithms for Nonlinear State-space Models
    Wahlstrom, Johan
    Jalden, Joakim
    Skog, Isaac
    Handel, Peter
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1260 - 1267
  • [49] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [50] Parallel distributed estimation for polynomial nonlinear state space models
    Jian-hong W.
    Yan-xiang W.
    International Journal of Dynamics and Control, 2020, 8 (04) : 1169 - 1180