Second-order optimality conditions in generalized semi-infinite programming

被引:25
|
作者
Rückmann, JJ
Shapiro, A
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
来源
SET-VALUED ANALYSIS | 2001年 / 9卷 / 1-2期
基金
美国国家科学基金会;
关键词
generalized semi-infinite programming; necessary and sufficient second-order optimality; conditions; optimal value function; second-order (parabolically) directionally differentiable; second-order growth condition;
D O I
10.1023/A:1011239607220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with generalized semi-infinite optimization problems where the (infinite) index set of inequality constraints depends on the state variables and all involved functions are twice continuously differentiable. Necessary and sufficient second-order optimality conditions for such problems are derived under assumptions which imply that the corresponding optimal value function is second-order (parabolically) directionally differentiable and second-order epiregular at the considered point. These sufficient conditions are, in particular, equivalent to the second-order growth condition.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 50 条
  • [41] On generalized semi-infinite programming
    Rueckmann, Jan-J.
    Gomez, Juan Alfredo
    TOP, 2006, 14 (01) : 1 - 32
  • [42] On higher-order strong KKT optimality conditions for multiobjective semi-infinite programming problems
    Feng, Min
    Cao, Qi
    Wang, Qilin
    OPTIMIZATION, 2024,
  • [43] First-order optimality conditions for degenerate index sets in generalized semi-infinite optimization
    Stein, O
    MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (03) : 565 - 582
  • [44] First-order optimality conditions for two classes of generalized nonsmooth semi-infinite optimization
    Pang, Li-Ping
    Wang, Ming-Zheng
    Xia, Zun-Quan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1457 - 1464
  • [45] Homeomorphic optimality conditions and duality for semi-infinite programming on smooth manifolds
    TUNG L.T.
    TAM D.H.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [46] Optimality Conditions of Approximate Solutions for Nonsmooth Semi-infinite Programming Problems
    Long X.-J.
    Xiao Y.-B.
    Huang N.-J.
    Journal of the Operations Research Society of China, 2018, 6 (02) : 289 - 299
  • [47] HOMEOMORPHIC OPTIMALITY CONDITIONS AND DUALITY FOR SEMI-INFINITE PROGRAMMING ON SMOOTH MANIFOLDS
    Le Thanh Tung
    Dang Hoang Tam
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [48] Second-order algorithms for generalized finite and semi-infinite min-max problems
    Polak, E
    Qi, LQ
    Sun, DF
    SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (04) : 937 - 961
  • [49] Second-order coplanar perturbation of a semi-infinite crack in an infinite body
    Leblond, Jean-Baptiste
    Patinet, Sylvain
    Frelat, Joel
    Lazarus, Veronique
    ENGINEERING FRACTURE MECHANICS, 2012, 90 : 129 - 142
  • [50] Optimality Conditions and Duality for Multiobjective Semi-infinite Programming on Hadamard Manifolds
    Le Thanh Tung
    Dang Hoang Tam
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2191 - 2219