Prediction of corneal permeability using artificial neural networks

被引:0
|
作者
Agatonovic-Kustrin, S
Evans, A
Alany, RG
机构
[1] Univ Auckland, Sch Pharm, Auckland 1, New Zealand
[2] Univ S Australia, Pharmaceut Res Ctr, Sch Pharmaceut Mol & Biomed Sci, Adelaide, SA 5001, Australia
来源
PHARMAZIE | 2003年 / 58卷 / 10期
关键词
D O I
暂无
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The purpose of this study was to develop a simple model for prediction of corneal permeability of structurally different drugs as a function of calculated molecular descriptors using artificial neural networks. A set of 45 compounds with experimentally derived values of corneal permeability (log C) was used to develop, test and validate a predictive model. Each compound was encoded with 1194 calculated molecular structure descriptors. A genetic algorithm was used to select a subset of descriptors that best describe corneal permeability coefficient log C and a supervised network with radial basis transfer function (RBF) was used to correlate calculated molecular descriptors with experimentally derived measures of corneal permeability. The best model, with 4 input descriptors and 12 hidden neurones was chosen, and the significance of the selected descriptors to corneal permeability was examined. Strong correlation of predicted with experimentally derived log C values (correlation coefficient greater than 0.87 and 0.83 respectively) was obtained for the training and testing data sets. The developed model could be useful for the rapid prediction of the corneal permeability of candidate drugs based on molecular structure alone as it does not require experimentally derived data.
引用
收藏
页码:725 / 729
页数:5
相关论文
共 50 条
  • [41] Horse Racing Prediction Using Artificial Neural Networks
    Davoodi, Elnaz
    Khanteymoori, Ali Reza
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 155 - 160
  • [42] On Prediction of Friction Coefficient Using Artificial Neural Networks
    Deiab, Ibrahim M.
    Shammari, Awadh T. A.
    2009 6TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA), 2009, : 1 - +
  • [43] Dewpoint temperature prediction using artificial neural networks
    Shank, D. B.
    Hoogenboom, G.
    McClendon, R. W.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (06) : 1757 - 1769
  • [44] Daily Discharge Prediction Using Artificial Neural Networks
    Zhao Weiguo
    Wang Liying
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 2799 - 2803
  • [45] Prediction of groundwater drawdown using artificial neural networks
    Gholami, Vahid
    Sahour, Hossein
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (22) : 33544 - 33557
  • [46] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 70 : 25 - 32
  • [47] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V.
    Gupta, Rakesh
    Chakrabarti, P.P.
    Bhowmick, Anil K.
    Journal of Applied Polymer Science, 2006, 100 (03): : 2227 - 2237
  • [48] Medical Disease Prediction Using Artificial Neural Networks
    Mantzaris, Dimitrios H.
    Anastassopoulos, George C.
    Lymberopoulos, Dimitrios K.
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 793 - +
  • [49] STUDENT SUCCESS PREDICTION USING ARTIFICIAL NEURAL NETWORKS
    Ljubicic, Teo
    Hell, Marko
    EKONOMSKA MISAO I PRAKSA-ECONOMIC THOUGHT AND PRACTICE, 2023, 32 (02): : 361 - 374
  • [50] Prediction of human behaviour using artificial neural networks
    Zhang, Zhicheng
    Vanderhaegen, Frederic
    Millot, Patrick
    ADVANCES IN MACHINE LEARNING AND CYBERNETICS, 2006, 3930 : 770 - 779