Poststack Seismic Data Denoising Based on 3-D Convolutional Neural Network

被引:111
|
作者
Liu, Dawei [1 ]
Wang, Wei [2 ]
Wang, Xiaokai [1 ]
Wang, Cheng [3 ]
Pei, Jiangyun [3 ]
Chen, Wenchao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[2] DataYes, InvestBrain, Shanghai 200085, Peoples R China
[3] Daqing Oilfield Co Ltd, Explorat & Dev Res Inst, Daqing 163712, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
3-D; convolutional neural networks (CNNs); seismic data denoising; training sample selection; SINGULAR-VALUE DECOMPOSITION; NOISE ATTENUATION; REDUCTION; ENHANCEMENT; PREDICTION; TRANSFORM;
D O I
10.1109/TGRS.2019.2947149
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning has been successfully applied to image denoising. In this study, we take one step forward by using deep learning to suppress random noise in poststack seismic data from the aspects of network architecture and training samples. On the one hand, poststack seismic data denoising mainly aims at 3-D seismic data. We designed an end-to-end 3-D denoising convolutional neural network (3-D-DnCNN) that takes raw 3-D cubes as input in order to better extract the features of the 3-D spatial structure of poststack seismic data. On the other hand, denoising images with deep learning require noisy-clean sample pairs for training. In the field of seismic data processing, researchers usually try their best to suppress noise by using complex processes that combine different methods, but clean labels of seismic data are not available. In addition, building training samples in field seismic data has become an interesting but challenging problem. Therefore, we propose a training sample selection method that contains a complex workflow to produce comparatively ideal training samples. Experiments in this study demonstrate that deep learning can directly learn the ability to denoise field seismic data from selected samples. Although the building of the training samples may occur through a complex process, the experimental results of synthetic seismic data and field seismic data show that the 3-D-DnCNN has learned the ability to suppress the Gaussian noise and super-Gaussian noise from different training samples. Moreover, the 3-D-DnCNN network has better denoising performance toward arc-like imaging noise. In addition, we adopt residual learning and batch normalization in order to accelerate the training speed. After network training is satisfactorily completed, its processing efficiency can be significantly higher than that of conventional denoising methods.
引用
收藏
页码:1598 / 1629
页数:32
相关论文
共 50 条
  • [31] Sparse Seismic Data Reconstruction Based on a Convolutional Neural Network Algorithm
    HOU Xinwei
    TONG Siyou
    WANG Zhongcheng
    XU Xiugang
    PENG Yin
    WANG Kai
    Journal of Ocean University of China, 2023, 22 (02) : 410 - 418
  • [32] An ECG denoising method based on adversarial denoising convolutional neural network
    Hou, Yanrong
    Liu, Ruixia
    Shu, Minglei
    Chen, Changfang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [33] 3-D Seismic Multihorizon Extraction Based on a Domain Adaptive Deep Neural Network
    He, Xin
    Fei, Yifeng
    Zhou, Cheng
    Qian, Feng
    Wang, Yaojun
    Yu, Gang
    Hu, Guangmin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [34] Definition of geohazards in exploration 3-D seismic data using attributes and neural network analysis
    Heggland, R
    AAPG BULLETIN, 2004, 88 (06) : 857 - 868
  • [35] A Interferogram Denoising Method Based on Convolutional Neural Network
    Tao L.
    Huang G.
    Yang S.
    Wang T.
    Sheng H.
    Fan H.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (04): : 559 - 567
  • [36] Infrared image denoising based on convolutional neural network
    Sun, Cheng
    Pan, Mingqiang
    Zhou, Bin
    Zhu, Zongjian
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 499 - 502
  • [37] Radiation Image Denoising Based on Convolutional Neural Network
    Sun Y.-W.
    Liu H.
    Cong P.
    Li L.-T.
    Xiang X.-C.
    Guo X.-J.
    Yuanzineng Kexue Jishu, 9 (1678-1682): : 1678 - 1682
  • [38] 3-D Gabor Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Liao, Jianhui
    Xu, Meng
    Li, Yan
    Zhu, Jiasong
    Sun, Weiwei
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] 3-D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising
    Wei, Kaixuan
    Fu, Ying
    Huang, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 363 - 375
  • [40] A combined denoising method for Q-factor compensation of poststack seismic data
    Zhang, Peng
    Wang, Qinghan
    Liu, Yang
    Chen, Changle
    JOURNAL OF APPLIED GEOPHYSICS, 2024, 229