Visual tracking via robust multitask sparse prototypes

被引:2
|
作者
Zhang, Huanlong [1 ,2 ]
Hu, Shiqiang [1 ]
Yu, Junyang [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[2] Luoyang Inst Sci & Technol, Dept Comp & Informat Engn, Henan 471023, Peoples R China
[3] Cent South Univ, Software Sch, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
online subspace learning; multitask sparse prototypes; accelerated proximal gradient algorithm; real-time visual tracking; OBJECT TRACKING;
D O I
10.1117/1.JEI.24.2.023025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representation has been applied to an online subspace learning-based tracking problem. To handle partial occlusion effectively, some researchers introduce l(1) regularization to principal component analysis (PCA) reconstruction. However, in these traditional tracking methods, the representation of each object observation is often viewed as an individual task so the inter-relationship between PCA basis vectors is ignored. We propose a new online visual tracking algorithm with multitask sparse prototypes, which combines multitask sparse learning with PCA-based subspace representation. We first extend a visual tracking algorithm with sparse prototypes in multitask learning framework to mine inter-relations between subtasks. Then, to avoid the problem that enforcing all subtasks to share the same structure may result in degraded tracking results, we impose group sparse constraints on the coefficients of PCA basis vectors and element-wise sparse constraints on the error coefficients, respectively. Finally, we show that the proposed optimization problem can be effectively solved using the accelerated proximal gradient method with the fast convergence. Experimental results compared with the state-of-the-art tracking methods demonstrate that the proposed algorithm achieves favorable performance when the object undergoes partial occlusion, motion blur, and illumination changes. (C) 2015 SPIE and IS&T
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Robust Visual Tracking Via Consistent Low-Rank Sparse Learning
    Tianzhu Zhang
    Si Liu
    Narendra Ahuja
    Ming-Hsuan Yang
    Bernard Ghanem
    International Journal of Computer Vision, 2015, 111 : 171 - 190
  • [22] Robust visual tracking via discriminative appearance model based on sparse coding
    Zhao, Hainan
    Wang, Xuan
    MULTIMEDIA SYSTEMS, 2017, 23 (01) : 75 - 84
  • [23] Robust visual tracking via discriminative appearance model based on sparse coding
    Hainan Zhao
    Xuan Wang
    Multimedia Systems, 2017, 23 : 75 - 84
  • [24] Robust visual tracking via CAMShift and structural local sparse appearance model
    Zhao, Houqiang
    Xiang, Ke
    Cao, Songxiao
    Wang, Xuanyin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 34 : 176 - 186
  • [25] Robust Visual Tracking via Sparse Representation Under Subclass Discriminant Constraint
    Qian, Cheng
    Xu, Zezhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (07) : 1293 - 1307
  • [26] Robust Visual Tracking via Structured Multi-Task Sparse Learning
    Tianzhu Zhang
    Bernard Ghanem
    Si Liu
    Narendra Ahuja
    International Journal of Computer Vision, 2013, 101 : 367 - 383
  • [27] Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update
    Zheng, Penggen
    Zhan, Jin
    Zhao, Huimin
    Wu, Hefeng
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 484 - 494
  • [28] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Guoliang Yang
    Zhengwei Hu
    Jun Tang
    Arabian Journal for Science and Engineering, 2018, 43 : 627 - 636
  • [29] Robust visual tracking via two-stage binocular sparse learning
    Ma, Ziang
    Lu, Wei
    Yin, Jun
    Zhang, Xingming
    JOURNAL OF ENGINEERING-JOE, 2018, (16): : 1606 - 1611
  • [30] Robust Visual Tracking Via Consistent Low-Rank Sparse Learning
    Zhang, Tianzhu
    Liu, Si
    Ahuja, Narendra
    Yang, Ming-Hsuan
    Ghanem, Bernard
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (02) : 171 - 190