Visual tracking via robust multitask sparse prototypes

被引:2
|
作者
Zhang, Huanlong [1 ,2 ]
Hu, Shiqiang [1 ]
Yu, Junyang [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[2] Luoyang Inst Sci & Technol, Dept Comp & Informat Engn, Henan 471023, Peoples R China
[3] Cent South Univ, Software Sch, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
online subspace learning; multitask sparse prototypes; accelerated proximal gradient algorithm; real-time visual tracking; OBJECT TRACKING;
D O I
10.1117/1.JEI.24.2.023025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representation has been applied to an online subspace learning-based tracking problem. To handle partial occlusion effectively, some researchers introduce l(1) regularization to principal component analysis (PCA) reconstruction. However, in these traditional tracking methods, the representation of each object observation is often viewed as an individual task so the inter-relationship between PCA basis vectors is ignored. We propose a new online visual tracking algorithm with multitask sparse prototypes, which combines multitask sparse learning with PCA-based subspace representation. We first extend a visual tracking algorithm with sparse prototypes in multitask learning framework to mine inter-relations between subtasks. Then, to avoid the problem that enforcing all subtasks to share the same structure may result in degraded tracking results, we impose group sparse constraints on the coefficients of PCA basis vectors and element-wise sparse constraints on the error coefficients, respectively. Finally, we show that the proposed optimization problem can be effectively solved using the accelerated proximal gradient method with the fast convergence. Experimental results compared with the state-of-the-art tracking methods demonstrate that the proposed algorithm achieves favorable performance when the object undergoes partial occlusion, motion blur, and illumination changes. (C) 2015 SPIE and IS&T
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Robust visual multitask tracking via composite sparse model
    Jin, Bo
    Jing, Zhongliang
    Wang, Meng
    Pan, Han
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
  • [2] Robust Visual Tracking via Multitask Sparse Correlation Filters Learning
    Nai, Ke
    Li, Zhiyong
    Gan, Yihui
    Wang, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 502 - 515
  • [3] Object Tracking via Robust Multitask Sparse Representation
    Bai, Yancheng
    Tang, Ming
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (08) : 909 - 913
  • [4] Robust Visual Tracking via Discriminative Structural Sparse Feature
    Wang, Fenglei
    Zhang, Jun
    Guo, Qiang
    Liu, Pan
    Tu, Dan
    ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 438 - 446
  • [5] Robust Visual Tracking and Vehicle Classification via Sparse Representation
    Mei, Xue
    Ling, Haibin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (11) : 2259 - 2272
  • [6] Robust Visual Tracking via Binocular Consistent Sparse Learning
    Ma, Ziang
    Xiang, Zhiyu
    NEURAL PROCESSING LETTERS, 2017, 46 (02) : 627 - 642
  • [7] Robust Visual Tracking via Appearance Modeling and Sparse Representation
    Li, Ming
    Ma, Fanglan
    Nian, Fuzhong
    JOURNAL OF COMPUTERS, 2014, 9 (07) : 1612 - 1619
  • [8] Robust Visual Tracking via Discriminative Sparse Point Matching
    Wen, Hui
    Ge, Shiming
    Yang, Rui
    Chen, Shuixian
    Sun, Limin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1243 - 1246
  • [9] Robust Visual Tracking via Binocular Consistent Sparse Learning
    Ziang Ma
    Zhiyu Xiang
    Neural Processing Letters, 2017, 46 : 627 - 642
  • [10] Robust visual tracking via multiscale deep sparse networks
    Wang, Xin
    Hou, Zhiqiang
    Yu, Wangsheng
    Xue, Yang
    Jin, Zefenfen
    Dai, Bo
    OPTICAL ENGINEERING, 2017, 56 (04)