Structural stability of a coaxial carbon nanotube inside a boron-nitride nanotube

被引:30
|
作者
Yuan, Jianhui [1 ,2 ]
Liew, K. M. [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410114, Hunan, Peoples R China
[2] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China
关键词
UNIVERSAL FORCE-FIELD; ELASTIC PROPERTIES; CARBOTHERMAL SYNTHESIS; GRAPHENE NANORIBBONS; OXIDATION; RECONSTRUCTION; COMPRESSION; RESISTANCE; NANOWIRES; MECHANICS;
D O I
10.1016/j.carbon.2010.10.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structural stability of a coaxial carbon nanotube inside a boron-nitride nanotube (C@BNNT) is investigated by molecular dynamics simulation. The geometric structures of armchair C(5,5)@BN(n,n) and zigzag C(9,0)@BN(m,0) nanotubes (n = 8-15; m = 15-22) are optimized by the density functional theory method using the DMol3 code. A comparison of the variation in the tube radius and analyses of the bind energy and radial distribution function show that the best BN(n,n) nanotubes for coupling with C(5,5) to form C(5,5)@BN(n,n) are BN(10,10), and the best BN(m,0) nanotubes for coupling with C(9,0) to form C(9,0)@BN(m,0) are BN(17,0) and BN(18,0). The optimal interwall distances between the inner C tube and the outer BN tube are about 0.35 nm for armchair and from 0.33 to 0.36 nm for zigzag nanotubes, respectively. The armchair C@BNNTs achieve a more stable combination structure than the zigzag case. Analyses of their energy and deformation electron density reveal that the interwall interaction between the inner carbon nanotube and outer boron-nitride nanotube is a van der Waals interaction. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:677 / 683
页数:7
相关论文
共 50 条
  • [41] Boron nitride nanotube, nanocable and nanocone
    Golberg, D
    Bando, Y
    Bourgeois, L
    Ma, R
    Ogawa, K
    Kurashima, K
    Sato, T
    MAKING FUNCTIONAL MATERIALS WITH NANOTUBES, 2002, 706 : 19 - 28
  • [42] Boron Nitride Nanotube: Synthesis and Applications
    Tiano, Amanda L.
    Park, Cheol
    Lee, Joseph W.
    Luong, Hoa H.
    Gibbons, Luke J.
    Chu, Sang-Hyon
    Applin, Samantha I.
    Gnoffo, Peter
    Lowther, Sharon
    Kim, Hyun Jung
    Danehy, Paul M.
    Inman, Jennifer A.
    Jones, Stephen B.
    Kang, Jin Ho
    Sauti, Godfrey
    Thibeault, Sheila A.
    Yamakov, Vesselin
    Wise, Kristopher E.
    Su, Ji
    Fay, Catharine C.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2014, 2014, 9060
  • [43] STRUCTURAL CHARACTERIZATION OF BORON-NITRIDE FILMS
    DUNCAN, TM
    LEVY, RA
    GALLAGHER, PK
    WALSH, MW
    JOURNAL OF APPLIED PHYSICS, 1988, 64 (06) : 2990 - 2994
  • [45] Boron nitride nanotube branched nanojunctions
    Cao, L. M.
    Zhang, X. Y.
    Tian, H.
    Zhang, A.
    Wang, W. K.
    NANOTECHNOLOGY, 2007, 18 (15)
  • [46] Elastic moduli of a boron nitride nanotube
    Verma, Veena
    Jindal, V. K.
    Dharamvir, Keya
    NANOTECHNOLOGY, 2007, 18 (43)
  • [47] Sublattice Superconductivity in Boron Nitride Nanotube
    Hamze Mousavi
    Journal of Superconductivity and Novel Magnetism, 2013, 26 : 2905 - 2909
  • [48] The Activation of Methane on Ru, Rh, and Pd Decorated Carbon Nanotube and Boron Nitride Nanotube: A DFT Study
    Boekfa, Bundet
    Treesukol, Piti
    Injongkol, Yuwanda
    Maihom, Thana
    Maitarad, Phornphimon
    Limtrakul, Jumras
    CATALYSTS, 2018, 8 (05)
  • [49] CRYSTALLOGRAPHY OF TRANSFORMATIONS IN CARBON AND BORON-NITRIDE
    KURDYUMOV, AV
    OSTROVSKAYA, NF
    PILYANKEVICH, AN
    ACTA CRYSTALLOGRAPHICA SECTION A, 1978, 34 : S306 - S306
  • [50] Simulation Research on Formation and Compression Properties of Iron Nanowire and Boron-Nitride Nanotube Composite Stuctures
    Yuan Jian-Hui
    Huang Wei-Hui
    Shi Xiang-Hua
    Zhang Zhen-Hua
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2012, 28 (01) : 125 - 130