Topological aspects of the Medvedev lattice

被引:4
|
作者
Lewis, Andrew E. M. [2 ]
Shore, Richard A. [3 ]
Sorbi, Andrea [1 ]
机构
[1] Univ Siena, Dept Math & Comp Sci R Magari, I-53100 Siena, Italy
[2] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
来源
ARCHIVE FOR MATHEMATICAL LOGIC | 2011年 / 50卷 / 3-4期
基金
美国国家科学基金会;
关键词
Medvedev reducibility; Baire space; Cantor space; SETS;
D O I
10.1007/s00153-010-0215-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Medvedev degrees of mass problems with distinguished topological properties, such as denseness, closedness, or discreteness. We investigate the sublattices generated by these degrees; the prime ideal generated by the dense degrees and its complement, a prime filter; the filter generated by the nonzero closed degrees and the filter generated by the nonzero discrete degrees. We give a complete picture of the relationships of inclusion holding between these sublattices, these filters, and this ideal. We show that the sublattice of the closed Medvedev degrees is not a Brouwer algebra. We investigate the dense degrees of mass problems that are closed under Turing equivalence, and we prove that the dense degrees form an automorphism base for the Medvedev lattice. The results hold for both the Medvedev lattice on the Baire space and the Medvedev lattice on the Cantor space.
引用
收藏
页码:319 / 340
页数:22
相关论文
共 50 条
  • [42] Topological Aspects of Biosemiotics
    Zimmermann, Rainer E.
    TRIPLEC-COMMUNICATION CAPITALISM & CRITIQUE, 2007, 5 (02): : 49 - 63
  • [43] On topological aspects of orientations
    de Fraysseix, H
    Ossona de Mendez, P
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 57 - 72
  • [44] Topological aspects of antiferromagnets
    Bonbien, V
    Zhuo, Fengjun
    Salimath, A.
    Ly, O.
    Abbout, A.
    Manchon, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (10)
  • [45] Topological aspects of numberings
    Menzel, W
    Stephan, F
    MATHEMATICAL LOGIC QUARTERLY, 2003, 49 (02) : 129 - 149
  • [46] Topological superconductors in correlated topological insulators on the honeycomb lattice
    Liang, Ying
    He, Jing
    Wu, Ya-Jie
    Zhu, Ying-Xue
    Kou, Su-Peng
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11):
  • [47] Topological superconductors in correlated topological insulators on the honeycomb lattice
    Ying Liang
    Jing He
    Ya-Jie Wu
    Ying-Xue Zhu
    Su-Peng Kou
    The European Physical Journal B, 2013, 86
  • [48] On the topological mass lattice groups
    M. Pourgholamhossein
    M. A. Ranjbar
    Positivity, 2019, 23 : 811 - 827
  • [49] THE TOPOLOGICAL SUSCEPTIBILITY AND LATTICE UNIVERSALITY
    DIGIACOMO, A
    PANAGOPOULOS, H
    VICARI, E
    NUCLEAR PHYSICS B, 1990, 338 (01) : 294 - 316
  • [50] TOPOLOGICAL DENSITY AND INSTANTONS ON A LATTICE
    GRANDY, J
    GUPTA, R
    NUCLEAR PHYSICS B, 1995, : 246 - 248