A Short Introduction to One-Dimensional Conservation Laws

被引:0
|
作者
Eftimie, Raluca [1 ]
机构
[1] Univ Dundee, Div Math, Dundee, Scotland
关键词
HYPERBOLIC SYSTEMS;
D O I
10.1007/978-3-030-02586-1_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [41] Conservation laws with discontinuous flux: a short introduction
    Raimund Bürger
    Kenneth H. Karlsen
    Journal of Engineering Mathematics, 2008, 60 : 241 - 247
  • [42] Conservation laws with discontinuous flux:: a short introduction
    Burger, Raimund
    Karlsen, Kenneth H.
    JOURNAL OF ENGINEERING MATHEMATICS, 2008, 60 (3-4) : 241 - 247
  • [43] Symmetries and conservation laws of the one-dimensional shallow water magnetohydrodynamics equations in Lagrangian coordinates
    Kaptsov, E., I
    Meleshko, S., V
    Dorodnitsyn, V. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (49)
  • [44] OSCILLATING WAVES AND OPTIMAL SMOOTHING EFFECT FOR ONE-DIMENSIONAL NONLINEAR SCALAR CONSERVATION LAWS
    Castelli, Pierre
    Junca, Stephane
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 709 - 716
  • [45] Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux
    Andreianov, Boris
    Donadello, Carlotta
    Razafison, Ulrich
    Rosini, Massimiliano D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 309 - 346
  • [46] One-dimensional nonlinear elastodynamic models and their local conservation laws with applications to biological membranes
    Cheviakov, A. F.
    Ganghoffer, J. -F.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 58 : 105 - 121
  • [47] Group Analysis of the One-Dimensional Gas Dynamics Equations in Lagrangian Coordinates and Conservation Laws
    C. Kaewmanee
    S. V. Meleshko
    Journal of Applied Mechanics and Technical Physics, 2020, 61 : 189 - 206
  • [48] FURTHER RESULTS FOR INFINITE CONSERVATION-LAWS IN THE ONE-DIMENSIONAL HUBBARD-MODEL
    ZHOU, HQ
    TANG, JG
    PHYSICAL REVIEW B, 1988, 38 (16): : 11915 - 11917
  • [49] A NUMERICAL SCHEME WITH A MESH ON CHARACTERISTICS FOR THE CAUCHY PROBLEM FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION LAWS
    Yoon, Daeki
    Kim, Hongjoong
    Hwang, Woonjae
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 24 (03): : 459 - 466
  • [50] A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws
    Christlieb, Andrew
    Glo, Wei
    Jiang, Yan
    Yang, Hyoseon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 380 : 334 - 354