The skew-normal distribution on the simplex

被引:14
|
作者
Mateu-Figueras, Gloria [1 ]
Pawlowsky-Glahn, Vera [1 ]
机构
[1] Univ Girona, Dept Comp Sci & Appl Math, E-17071 Girona, Spain
关键词
Aitchison geometry; constrained sample space; random composition;
D O I
10.1080/03610920601126258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Density functions on the simplex defined with respect to the Lebesgue measure can change from unimodality to multimodality with perturbation. This phenomenon is induced by the incompatibility of the Aitchison geometry and the Lebesgue measure. A Lebesgue-type measure, compatible with the algebraic geometric structure Of the simplex, is used here to define the skew-normal density on the simplex as the Radon-Nykodym derivative with respect to it. Similarities and differences between the densities obtained using the different measures are analyzed.
引用
收藏
页码:1787 / 1802
页数:16
相关论文
共 50 条
  • [21] Bimodality based on the generalized skew-normal distribution
    Venegas, Osvaldo
    Salinas, Hugo S.
    Gallardo, Diego I.
    Bolfarine, Heleno
    Gomez, Hector W.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (01) : 156 - 181
  • [22] Multivariate measures of skewness for the skew-normal distribution
    Balakrishnan, N.
    Scarpa, Bruno
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 104 (01) : 73 - 87
  • [23] A new generalized Balakrishnan skew-normal distribution
    Hasanalipour, P.
    Sharafi, M.
    STATISTICAL PAPERS, 2012, 53 (01) : 219 - 228
  • [24] A new generalized Balakrishnan skew-normal distribution
    P. Hasanalipour
    M. Sharafi
    Statistical Papers, 2012, 53 : 219 - 228
  • [25] Adaptive control charts for skew-normal distribution
    Chiang, Jyun-You
    Tsai, Tzong-Ru
    Su, Nan-Cheng
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2018, 34 (04) : 589 - 608
  • [26] Some properties of the unified skew-normal distribution
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    STATISTICAL PAPERS, 2022, 63 (02) : 461 - 487
  • [27] Skew-Normal Approximation to the Negative Binomial Distribution
    Chang, Ching-Hui
    Lin, Jyh-Jiuan
    Chiang, Miao-Chen
    IMSCI '08: 2ND INTERNATIONAL MULTI-CONFERENCE ON SOCIETY, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2008, : 147 - +
  • [28] A generalized skew two-piece skew-normal distribution
    A. Jamalizadeh
    A. R. Arabpour
    N. Balakrishnan
    Statistical Papers, 2011, 52 : 431 - 446
  • [29] On the correlation structures of multivariate skew-normal distribution
    Kaarik, Ene
    Kaarik, Meelis
    Maadik, Inger-Helen
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 83 - 100
  • [30] A note on the likelihood and moments of the skew-normal distribution
    Martínez, Eliseo H.
    Varela, Héctor
    Gómez, Héctor W.
    Bolfarine, Heleno
    SORT, 2008, 32 (01): : 57 - 65