New transformations of aggregation functions based on monotone systems of functions

被引:2
|
作者
Jin, LeSheng [1 ]
Mesiar, Radko [2 ,3 ]
Kalina, Martin [2 ]
Spirkova, Jana [4 ]
Borkotokey, Surajit [5 ]
机构
[1] Nanjing Normal Univ, Business Sch, Nanjing, Jiangsu, Peoples R China
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Radlinskeho 11, Sk-81005 Bratislava, Slovakia
[3] Palacky Univ Olomouc, Dept Algebra & Geometry, Fac Sci, 17 Listopadu 12, Cz-77900 Olomouc, Czech Republic
[4] Matej Bel Univ Banska Bystrica, Fac Econ, Tajovskeho 10, SK-97590 Banska Bystrica, Slovakia
[5] Dibrugarh Univ, Dept Math, Dibrugarh 786004, Assam, India
关键词
Aggregation function; Convex sum; Copula; *-product; GCS-transform; Weighted arithmetic mean; COPULAS;
D O I
10.1016/j.ijar.2019.12.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a Generalized-Convex-Sum-Transformation of aggregation functions. It has the form of a transformation of aggregation functions by monotone systems of functions. A special case of the proposed Generalized-Convex-Sum-Transformation is the well-known *-product, also called the Darsow product of copulas. Similarly, our approach covers Choquet integrals with respect to capacities induced by the considered aggregation function. The paper offers basic definitions and some properties of the mentioned transformation. Various examples illustrating the transformation are presented. The paper also gives two alternative transformations of aggregation functions under which the dimension of the transformed aggregation functions is higher than that of the original one. Interestingly, if a copula is transformed, under some conditions put on the monotone systems of functions, the transformed aggregation function is again a copula. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 50 条
  • [41] Monotone Boolean functions
    Korshunov, AD
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (05) : 929 - 1001
  • [42] ON QUOTIENT OF MONOTONE FUNCTIONS
    MOTT, TE
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (02): : 195 - &
  • [43] ON FUNCTIONS THAT ARE MONOTONE ON NO INTERVAL
    SALAT, T
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (10): : 754 - 755
  • [44] Monotone functions and maps
    Saugata Basu
    Andrei Gabrielov
    Nicolai Vorobjov
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 : 5 - 33
  • [45] Estimating monotone functions
    Low, MG
    Kang, YG
    STATISTICS & PROBABILITY LETTERS, 2002, 56 (04) : 361 - 367
  • [46] MONOTONE DECREASING FUNCTIONS
    MOURANT, WJ
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (08): : 915 - &
  • [47] ABSOLUTELY MONOTONE FUNCTIONS
    MCMILLAN, B
    ANNALS OF MATHEMATICS, 1954, 60 (03) : 467 - 501
  • [48] Transformations of Aggregation Functions: Local Versus Global Properties and Approximation
    Siran, Jozef
    2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 65 - 67
  • [49] Characterization of some aggregation functions stable for positive linear transformations
    Marichal, JL
    Mathonet, P
    Tousset, E
    FUZZY SETS AND SYSTEMS, 1999, 102 (02) : 293 - 314
  • [50] A new family of aggregation functions for intervals
    Susana Diaz-Vazquez
    Emilio Torres-Manzanera
    Noelia Rico
    Radko Mesiar
    Iosu Rodriguez-Martinez
    Julio Lafuente
    Irene Diaz
    Susana Montes
    Humberto Bustince
    Computational and Applied Mathematics, 2024, 43