Detection of SARS-CoV-2 RNA in bivalve mollusks and marine sediments

被引:32
|
作者
Polo, David [1 ,2 ]
Lois, Marta [1 ,2 ]
Teresa Fernandez-Nunez, Maria [3 ]
Romalde, Jesus L. [1 ,2 ]
机构
[1] Univ Santiago de Compostela, CIBUS Fac Biol, Dept Microbiol & Parasitol, Santiago De Compostela 15782, Spain
[2] Univ Santiago de Compostela, Inst CRETUS, Santiago De Compostela 15782, Spain
[3] Cofradia Pescadores Mino, Porto S-N, Mino 15630, A Coruna, Spain
关键词
SARS-CoV-2; COVID-19; Wastewater; Bivalve mollusks; Sediments; Marine environment; WATER-QUALITY; NOROVIRUS; SHELLFISH; VIRUSES; PCR;
D O I
10.1016/j.scitotenv.2021.147534
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The presence of SARS-CoV-2 in wastewater pose the question of whether this new pandemic virus could be released into watercourses and potentially continue to finally reach coastalwaters. In this study, we employed two bivalve molluscan species from the genus Ruditapes as sentinel organisms to investigate the presence of SARS-CoV-2 signals in the marine coastal environment. Estuarine sediments from the natural clam banks were also analyzed. Viral RNA was detected by RT-qPCR, targeting IP4, E and N1 genomic regions. Positive samples were also subjected to a PMAxx-triton viability RT-qPCR assay in order to discriminate between intact and altered capsids, obtaining indirect information about the viability of the virus. SARS-CoV-2 RNA traces were detected in 9/12 clam samples by RT-qPCR, from which 4 were positive for two different target regions. Viral quantification ranged from <LoQ to 4.48 Log genomic copies/g of digestive tissue. Regarding the sediment samples, 3/12 were positive by RT-qPCR, but only IP4 region was successfully amplificated. Quantification values for sediment samples ranged from <LoQ to 3.60 Log genomic copies/g of sediment. RNA signals disappeared in the PMAxx-triton viability RT-qPCR assay, indicating non-infectious potential. In addition, the recently discovered human-specific gut associated bacteriophage crAssphage was also quantified as a biomarker for the presence of human-derived wastewater contamination on the study area. CrAssphage was detected in 100% of both types of samples with quantification values ranging from <LoQ to 5.94 Log gc/g digestive tissue and from <LoQ to 4.71 Log gc/g sediment. Statistical analysis also showed that quantification levels for the crAssphage in clams are significantly higher than in sediments. These findings represent the first detection of SARS-CoV-2 RNA in the marine environment, demonstrating that it can reach these habitats and make contact with the marine life. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Detection of SARS-CoV-2 by Use of the Cepheid Xpert Xpress SARS-CoV-2 and Roche cobas SARS-CoV-2 Assays
    Moran, Angelica
    Beavis, Kathleen G.
    Matushek, Scott M.
    Ciaglia, Carol
    Francois, Nina
    Tesic, Vera
    Love, Nedra
    JOURNAL OF CLINICAL MICROBIOLOGY, 2020, 58 (08)
  • [22] Saliva for Detection of SARS-CoV-2
    Markewitz, Robert D. H.
    Wandinger, Klaus-Peter
    Junker, Ralf
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (09):
  • [23] SARS-CoV-2 Detection Methods
    Lino, Alexandra
    Cardoso, Marita A.
    Goncalves, Helena M. R.
    Martins-Lopes, Paula
    CHEMOSENSORS, 2022, 10 (06)
  • [24] Faster detection of SARS-CoV-2
    Burgess, Kevin
    Whisenant, Jon
    CHEMISTRY & INDUSTRY, 2020, 84 (7-8) : 42 - 42
  • [25] A map of the SARS-CoV-2 RNA structurome
    Andrews, Ryan J.
    Peterson, Jake M.
    Haniff, Hafeez S.
    Chen, Jonathan
    Williams, Christopher
    Grefe, Maison
    Disney, Matthew D.
    Moss, Walter N.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02) : 1 - 14
  • [26] The mechanism of RNA capping by SARS-CoV-2
    Park, Gina J.
    Osinski, Adam
    Hernandez, Genaro
    Eitson, Jennifer L.
    Majumdar, Abir
    Tonelli, Marco
    Henzler-Wildman, Katie
    Pawlowski, Krzysztof
    Chen, Zhe
    Li, Yang
    Schoggins, John W.
    Tagliabracci, Vincent S.
    NATURE, 2022, 609 (7928) : 793 - +
  • [27] SARS-CoV-2 RNA reference materials
    Xu, Li
    Liang, Wen
    Yang, Xue
    Wen, Yanli
    Li, Lanying
    Yang, Zhenzhou
    Li, Yan
    Deng, Min
    Lu, Qing
    Ding, Min
    Ren, Shuzhen
    Sun, Jielin
    Zuo, Xiaolei
    Wang, Lihua
    Cao, Chengming
    Hu, Jun
    Liu, Gang
    Fan, Chunhai
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2363 - 2370
  • [28] RNA INTERFERENCE AGAINST SARS-COV-2
    Tolksdorf, Beatrice
    Niemeyer, Daniela
    Heinze, Julian
    Berg, Johanna
    Drosten, Christian
    Kurreck, Jens
    JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2023, 36 (06) : A4 - A4
  • [29] The mechanism of RNA capping by SARS-CoV-2
    Gina J. Park
    Adam Osinski
    Genaro Hernandez
    Jennifer L. Eitson
    Abir Majumdar
    Marco Tonelli
    Katie Henzler-Wildman
    Krzysztof Pawłowski
    Zhe Chen
    Yang Li
    John W. Schoggins
    Vincent S. Tagliabracci
    Nature, 2022, 609 : 793 - 800
  • [30] Comparison of the Accula SARS-CoV-2 Test with a Laboratory-Developed Assay for Detection of SARS-CoV-2 RNA in Clinical Nasopharyngeal Specimens
    Hogan, Catherine A.
    Garamani, Natasha
    Lee, Andrew S.
    Tung, Jack K.
    Sahoo, Malaya K.
    Huang, ChunHong
    Stevens, Bryan
    Zehnder, James
    Pinsky, Benjamin A.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2020, 58 (08)