Generating function, path integral representation, and equivalence for stochastic exclusive particle systems

被引:9
|
作者
Park, SC [1 ]
Park, JM
机构
[1] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[2] Catholic Univ Korea, Dept Phys, Puchon 420743, South Korea
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevE.71.026113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present the path integral representation of the generating function for classical exclusive particle systems. By introducing hard-core bosonic creation and annihilation operators and appropriate commutation relations, we construct the Fock space structure. Using the state vector, the generating function is defined and the master equation of the system is transformed into the equation for the generating function. Finally, the solution of the linear equation for the generating function is derived in the form of the path integral. Applying the formalism, the equivalence of reaction-diffusion processes of single species and two species is described.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Path-integral approach to a semiclassical stochastic description of quantum dissipative systems
    Casado-Pascual, J
    Denk, C
    Morillo, M
    Cukier, RI
    CHEMICAL PHYSICS, 2001, 268 (1-3) : 165 - 176
  • [42] Integral representation of one-dimensional three particle scattering for δ function interactions
    Amaya-Tapia, A
    Gasaneo, G
    Ovchinnikov, S
    Macek, JH
    Larsen, SY
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (09) : 3533 - 3545
  • [43] Quartic Wiener Path Integral Approximation for Stochastic Response Determination of Nonlinear Systems
    Zhang, Yuanjin
    Psaros, Apostolos F.
    Kougioumtzoglou, Ioannis A.
    JOURNAL OF ENGINEERING MECHANICS, 2025, 151 (05)
  • [44] Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
    Kougioumtzoglou, Ioannis A.
    Spanos, Pol D.
    JOURNAL OF ENGINEERING MECHANICS, 2014, 140 (09)
  • [45] Doi-Peliti path integral methods for stochastic systems with partial exclusion
    Greenman, Chris D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 505 : 211 - 221
  • [46] PLOTTING OF THE GENERATING FUNCTION FOR THE QUALITY FUNCTIONAL OF TRANSIENTS IN STOCHASTIC DISTRIBUTED SYSTEMS
    KOSTENKO, YT
    LYUBCHIK, LM
    MAZMANISHVILI, AS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (10): : 58 - 60
  • [47] Path-integral approach to single-particle excitation in Coulomb systems
    Sa-yakanit, V.
    Lakhno, V. D.
    Hass, K.
    Physical Review B: Condensed Matter, 57 (10):
  • [48] SOLUTION OF BLOCH EQUATION FOR MANY-PARTICLE SYSTEMS IN TERMS OF PATH INTEGRAL
    MORITA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 35 (04) : 980 - 984
  • [49] Path-integral approach to single-particle excitation in Coulomb systems
    Sa-yakanit, V
    Lakhno, VD
    Hass, K
    PHYSICAL REVIEW B, 1998, 57 (10): : 5772 - 5777
  • [50] A Functional Integral Representation for Many Boson Systems I: The Partition Function
    Tadeusz Balaban
    Joel Feldman
    Horst Knörrer
    Eugene Trubowitz
    Annales Henri Poincaré, 2008, 9 : 1229 - 1273